EFDA-JET-PR(10)36

Metal Impurity Transport Control in JET H-mode Plasmas with Central Ion Cyclotron Radio Frequency Power Injection

The scan of Ion Cyclotron Resonant Heating power has been used to systematically study the pump out effect of central electron heating on impurities such as Ni and Mo in H mode low collisionality discharges in JET. The transport parameters of Ni and Mo have been measured by introducing a transient perturbation on their densities via the Laser Blow Off technique. Without ICRH, Ni and Mo density profiles are typically peaked. The application of ICRH, induces on Ni and Mo in the plasma center (at normalized poloidal flux r = 0.2) an outward drift approximately proportional to the amount of injected power. Above a threshold, of about 3MW of ICRH power in the specific case, the radial flow of Ni and Mo changes from inward to outward and the impurity profiles, extrapolated to stationary conditions, become hollow. At mid radius the impurity profiles become flat or only slightly hollow. In the plasma centre the variation of the pinch parameter v/D of Ni is particularly well correlated with the change of the ion temperature gradient, in qualitative agreement with the neoclassical theory. However, the experimental radial velocity is larger than the neoclassical one by up to one order of magnitude. Gyrokinetic simulations of the radial impurity fluxes induced by electrostatic turbulence do not foresee a flow reversal in the analyzed discharges.
Name Size  
EFDP10036 1.12 Mb