Study of the Natural Density Formation in JET and ASDEX Upgrade
Study of the Natural Density Formation in JET and ASDEX Upgrade

K. Borrass,
ASDEX Upgrade Team1 and contributors to the EFDA-JET workprogramme*

1Max-Plank-Institut für Plasmaphysik, EURATOM Association, Garching, Germany.

ABSTRACT.
The natural H-mode density, i.e. the plasma density evolving in an H-mode discharge without active fuelling, reaches Greenwald fractions in JET typically higher than in ASDEX Upgrade. According to general thinking this reflects device-specific differences as regards recycling induced fuelling and beam fuelling. This paper presents evidence for a different view, namely that at sufficiently low plasma fuelling rates any fuelling rate dependence of the plasma density vanishes and the plasma particle content is completely determined by the plasma itself. It is shown that this limit, which would constitute an additional H-mode operational boundary, is reached in JET and ASDEX Upgrade natural density discharges and its scaling is determined. Possible overlapping with existing density limit scalings in next generation tokamaks is discussed with a view to the potential implications for the H-mode operation window.

1. INTRODUCTION
As is well known, the H-mode regime can be accessed in the absence of any gas inlet with a selfconsistently evolving density commonly referred to as the “natural density” (ND). According to general thinking the actual value of the ND is determined by the only two remaining particle sources, namely beam fuelling and wall induced fuelling. This paper presents evidence for a different view, namely that at sufficiently low fuelling rates the plasma density becomes independent of the particle sources. This would imply the existence of a lower limit for the density which is no longer controlled by sources, but is completely determined by the plasma itself (natural density limit). It is shown here that it is actually adopted in JET and ASDEX Upgrade ND discharges.

The wall recycling induced particle source is largely unknown and difficult to control. Therefore the direct verification of our hypothesis by a progressive reduction of the total plasma fuelling rate until its impact on density vanishes, is practically not feasible, and we have to rely on an indirect argument. The logic of this argument is as follows: Knowing all parameters that determine a tokamak discharge, viz. the machine parameters (MPs) (R, a, κ, ...), the discharge parameters (DPs) (Bt, qψ, ...) as well as the power to the plasma (P_in) and the plasma particle source (\dot{N}), one can, at least in principle, express any plasma quantity as a function of these parameters. For the line-averaged density, for instance, one has

\[n = n(MP; DP; P_{in}; \dot{N}) \]

Due to the inscient knowledge of \dot{N} this relation is of limited practical use. One way to overcome this problem is to replace \dot{N} by any plasma parameter that is in a one-to-one way linked with \dot{N}. In practical applications it is typically assumed that all dependences are of the power law type so that this condition is automatically met. One can then search for scalings of, for instance, n in terms of MPs, DPs, P_in and any other plasma parameter [1, 2]. If the \dot{N} dependence vanishes in natural density discharges, a scaling for the natural density \n_{ND} must exist which is entirely in terms of MPs, DPs and P_in. Thus, the existence of such a scaling is a necessary condition for our hypothesis to hold. It is also sufficient, provided that in the underlying database \dot{N} is not correlated with the MPs.
DPs or P_{in}. There are two areas where this requirement is not or possibly not fulfilled:

(i) The majority of empirical data are obtained in experiments which were performed at constant beam energy. In that case $N_{\text{beam}} \propto P_{in}$ holds, where N_{beam} is the beam fuelling rate. Experimental data at different beam fuelling rates are required to remedy the problem.

(ii) As regards the recycling-induced fuelling rate N_{wall}, it cannot be excluded that we accidentally select discharges with identical wall parameters, thus making the wall-induced fuelling rate a function of plasma parameters only.

Fortunately, a limited number of dedicated JET experiments exist where the beam or wall-induced fuelling rate is varied under otherwise fixed conditions, but the number is small and it would not be meaningful to include them in the statistical analysis. Instead the following procedure is adopted: In a first step the existing database is analyzed and it is shown that a scaling for n_{ND} of the required format exists. We then discuss in detail beam energy variation experiments and experiments where the wall conditions were deliberately changed.

In order to get information on the size dependence, we consider data from JET and ASDEX Upgrade.

2. NATURAL DENSITY SCALING

In the absence of a clear understanding of the physics underlying the formation of the ND, the line-averaged density is chosen as a target. According to the discussion of Sec. 1, one should seek a scaling in terms of the major radius R, aspect ratio A, shaping parameters (elongation κ, upper triangularity δ_u, lower triangularity δ_l, etc.), toroidal field B_t, safety factor q_{95}, heating power P_h and one other plasma parameter replacing the plasma particle source. Following Ref. [2] we choose for the latter the midplane recycling ux measured by the Dα photon flux $\Gamma_{D\alpha}$. As pointed out, we are free to choose any plasma quantity, but due to the close relation between $\Gamma_{D\alpha}$ and wall fuelling the disappearance of any $\Gamma_{D\alpha}$-dependence will be particularly convincing.

Some simplifications, the detailed justification of which are discussed elsewhere [3], can be made:

(i) In a JET and ASDEX Upgrade database there is naturally little variation of A and κ and we therefore completely ignore any dependences on these variables.

(ii) Following Ref. [2] we characterize the plasma shape by the single parameter $1 + \delta_u$, where δ_u is the the upper triangularity.

(iii) To take into account potentially different impurity levels we replace the heating power by the net input power $P_{in} = P_h - P_{tot}$, where P_{tot} is the total radiated power. Finally, P_{in} is replaced by the mean power flux across the separatrix q_{\perp} ($q_{\perp} = (P_{\text{heat}} - P_{\text{tot}})/O_p$, where O_p is the plasma surface) to simplify the discussion of Sec. 4.

Summarizing our discussion, we should now seek a scaling of n_{ND} in terms of R, B_t, q_{95}, q_{\perp}, $1 + \delta_u$ and $\Gamma_{D\alpha}$. However, a virtually vanishing $\Gamma_{D\alpha}$-dependence would be sensitively affected even by minor discrepancies in the calibration of the Dα photon ux diagnostics of JET and ASDEX Upgrade. In order not to be mislead by this, we therefore first check the Dα-dependence separately on the subset of JET data ignoring any R-dependence. Using the usual assumptions of least-squares
regression, we then obtain the empirical scaling:

\[n_{ND, \text{fit}}^{\text{JET}} = 4.38 \frac{B_1^{0.65 - 0.11} (1 + \delta_u)^{0.93 - 0.25} \Gamma_\text{fit}^{0.017 - 0.067}}{q_\perp^{0.014 - 0.064} B_1^{0.61 - 0.09} (1 + \delta_u)^{1.00 - 0.22}} \]

\[n_{ND, \text{fit}}^{\text{BLS}} = 41.4 \frac{q_\perp^{0.09} B_1^{0.53}}{(q_95 R)^{0.88}} \]

The exponents are given with their 95% confidence intervals. The \(\Gamma_\alpha \) dependence obviously vanishes within the error bars.

Having demonstrated that \(\bar{n}_{ND} \) can indeed be described in terms DPs, MPs and Pin, we now obtain our normal scaling by doing a regression for \(R \), \(q_95 \), \(B_\perp \), and \(1 + \delta_u \) on the full JET and ASDEX Upgrade database:

\[n_{ND, \text{fit}} = 9.77 \frac{q_\perp^{0.014 - 0.064} B_1^{0.61 - 0.09} (1 + \delta_u)^{1.00 - 0.22}}{q_95^{0.62 - 0.17} R^{0.57 - 0.14}} \]

Figure 1 illustrates the quality of the fit and provides the range of \(q_95 \), \(B_\perp \), \(P_\text{heat} \) and \(\delta_u \) variations covered by the database. Despite the limited range of variation of the ASDEX Upgrade data, there is some evidence that the two machines scale in the same way.

3. JET BEAM ENERGY VARIATION AND VESSEL TEMPERATURE VARIATION EXPERIMENTS

Dedicated beam energy experiments have been performed on JET which provide independent variation of the beam fuelling rate. Otherwise identical discharges were conducted with beam energies of 80keV and 140keV including pairs with no gas inlet. Despite the different beam fuelling rates the at-top densities of the two discharges are identical in shape and magnitude [3].

One way to change the recycling-relevant wall properties and hence wall fuelling is to operate at different wall temperatures. Pairs of identical discharges have been performed at JET at wall temperatures of 200° and 300°. As in the case of beam fuelling variation, the at top densities are found to be identical in size and shape. However, there is a marked difference in the \(\Gamma_\alpha \) signals of the two discharges, providing evidence that the wall properties are indeed affected [3].

4. IMPLICATIONS FOR THE H-MODE OPERATION WINDOW

In this section we discuss the condition \(\Phi \equiv n_{ND} = n_{DL} < 1 \), where \(n_{DL} \) is the H-mode density limit. It is not a priori clear what happens in a device where \(\Phi > 1 \), but it is natural to expect that \(\Phi < 1 \) is a prerequisite for the existence of an H-mode operation window. This is suggested by, in particular, the fact that the H-mode density limit seems to coincide with the high-density H-mode operation boundary [4, 5]. Various scalings have been proposed for the H-mode density limit. We discuss as one example the scaling proposed by Borrass, Lingertat and Schneider [6], which provides a good description of JET and ASDEX Upgrade data [4, 5]. It results in

\[\bar{n}_{BLS} = 41.4 \frac{q_\perp^{0.09} B_1^{0.53}}{(q_95 R)^{0.88}} \]
[10^{19} \text{ m}^{-3} \cdot \text{MW m}^{-2} \cdot \text{T} \cdot \text{m}]. As a second example we consider the empirical Greenwald scaling [7], which is widely used as a kind of reference:

\[\tilde{n}_{GW} = 10 \frac{I_p}{\pi a^2} \] (4)

[10^{19} \text{ m}^{-3} \cdot \text{MA} \cdot \text{T} \cdot \text{m}].

Extrapolation to ITER-like devices is, of course, our main concern. Generally the BLS scaling results in higher \(\Phi \) values. For ITER-FEAT parameters (\(R = 6.2 \text{m}, a = 2.0 \text{m}, B_t = 5.3 \text{T}, I_p = 15.0 \text{MA}, q_{95} = 3.2, \delta_u = 0.33, q_\perp = 0.10 \)) (estimated from \(P_\alpha = 80 \text{MW}, P_h = 40 \text{MW}, P_{rad} = 50 \text{MW} \) and a plasma surface of 680MW)) we obtain, for example,

\[\Phi_{\text{BLS}}^{\text{ITER-FEAT}} = 1.00 \text{ and } \Phi_{\text{GR}}^{\text{ITER-FEAT}} = 0.52 \]

For ITER-FDR [8] parameters (\(R = 8.14 \text{m}, a = 2.8 \text{m}, B_t = 5.68 \text{T}, I_p = 21 \text{MA}, q_{95} = 3.1, \delta_u = 0.31, q_\perp = 0.15 \)) we obtain similarly

\[\Phi_{\text{BLS}}^{\text{ITER-FDR}} = 1.05 \text{ and } \Phi_{\text{GR}}^{\text{ITER-FDR}} = 0.63 \]

These scaling results have to be interpreted with care. This is due to some intrinsic deficiencies of the available data for both the natural density and density limit. In fact, there is a strong correlation between \(R \) and \(\delta_u \) (see Fig.2), which makes a correct assessment of the size and triangularity dependences difficult. Unfortunately, this may strongly affect the predictions for ITER. Further experiments are in preparation on both JET and ASDEX Upgrade which will hopefully close this gap. Recent experiments at ASDEX Upgrade indicate an even stronger triangularity dependence than Eq. (2).

REFERENCES
Figure 1: Experimental natural densities $n_{ND,exp}$ from JET (circles) and ASDEX-Upgrade (squares) over $n_{ND,fit}$ calculated from Eq. (2) versus mean power flux across the separatrix q_{\perp}, toroidal field B_t, safety factor q_{95} at the 95% flux surface, major radius R, upper triangularity δ_u and D_α photon ux $\Gamma_{D\alpha}$.