An Overview of Process Instrumentation, Protective Safety Interlocks and Alarm System at the JET Facilities Active Gas Handling System
An Overview of Process Instrumentation, Protective Safety Interlocks and Alarm System at the JET Facilities Active Gas Handling System

N. Skinner¹,+, P. Brennan¹, K. Brown¹, C. Gibbons¹, G. Jones¹, S. Knipe¹, C. Manning¹, A. Perevezentsev¹, R. Stagg¹, R. Thomas¹ and J. Yorkshades¹

¹ EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire, OX14 3EA, UK
+ Corresponding Author: Nigel Skinner, J20/0/57, Culham Science Centre, Abingdon, Oxon, OX14 3EA
Email: ns@jet.uk; Tel: +44(0)1235 465182; Fax: +44(0)1235 464999

“This document is intended for publication in the open literature. It is made available on the understanding that it may not be further circulated and extracts or references may not be published prior to publication of the original when applicable, or without the consent of the Publications Officer, EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”

“Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.”
ABSTRACT.
The JET Facilities Active Gas Handling System (AGHS) comprises ten interconnected processing sub-
systems that supply, process and recover tritium from gases used in the JET Machine. Operations require
a diverse range of process instrumentation to carry out a multiplicity of monitoring and control tasks and
approximately 500 process variables are measured. The different types and application of process
instruments are presented with specially adapted or custom-built versions highlighted.

Forming part of the Safety Case for tritium operations, a dedicated hardwired interlock and
alarm system provides an essential safety function. In the event of failure modes, each hardwired
interlock will back-up software interlocks and shutdown areas of plant to a failsafe condition. Design
of the interlock and alarm system is outlined and general methodology described.

Practical experience gained during plant operations is summarised and the methods employed
for routine functional testing of essential instrument systems explained.

1. INTRODUCTION
The AGHS began commissioning in 1991 and has successfully supported JET machine operations,
including experimental tritium campaign, to date [1, 2]. During this period, process instrumentation
and safety interlocks have contributed to the safe and reliable operation of the AGHS. With careful
selection of equipment, routine functional testing of safety critical instrumentation systems and
evolution of operational and maintenance procedures, a minimum number of process interruptions
resulting from instrumentation and interlock system failure has occurred.

This paper provides a brief overview of the types of instrumentation and safety protection system
in use and remarks on the practical experience gained with relevance to future instrumented systems.

2. PROCESS INSTRUMENTATION
2.1 GENERAL
The main AGHS control features a Distributed Control System [3]; in addition two plant subsystems
are operated by Programmable Logic Controllers. All process instrumentation, which is not safety
related, interfaces directly with the control systems. For the purpose of functionality and
standardisation, the majority of analogue signals are conditioned to a 4 to 20mA process variable
signal and converted to plant wide process units, typically mbar or Kelvin.

It is a JET Quality Assurance requirement that all-primary process instrumentation and connecting
pipework must comply with national standards and has undergone extensive inspection and testing.
This includes the certification of materials for construction and testing for pressure and vacuum
leak tightness [1].

Instrumentation installed within the AGHS demonstrates several unique safety features. The majority
of instruments are placed in secondary containments and some of those are subject to elevated temperatures
up to 473K. Within purged containments, the environment is also subject to pressure changes. Hermetically
sealed ultra high vacuum electrical feedthroughs provide connection to external equipment and all
manufacturers standard cables have been adapted or changed. To comply with JET standards, all installed cables are manufactured from Low Smoke Zero Halogen insulation material.

An overview of general process instrumentation showing the process parameters and measurement methods employed throughout the plant including typical applications is given in Table I.

Examples of general instrumentation systems specific to AGHS requirements are:

- A critical humidity measurement on the outlet of the EDS alerts operators to molecular sieve dryer changes required [4]. Four identical aluminium oxide sensors mounted in a common copper manifold block provide a ‘two out of four’ high humidity alarm at greater than -60°C Dew Point. The arrangement is designed to avoid false alarms generated by sensor faults.

Table I: Overview of AGHS General Process Instrumentation

<table>
<thead>
<tr>
<th>Process parameter</th>
<th>Method of measurement</th>
<th>Safety functions</th>
<th>Sequence function</th>
<th>Typical task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>Strain Gauge Sensor</td>
<td>Yes</td>
<td>Yes</td>
<td>–Uranium Bed Controls</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>–Primary Process Pressure</td>
</tr>
<tr>
<td></td>
<td>Mechanical Pressure Switch</td>
<td>Yes</td>
<td>Yes</td>
<td>–Transfer Line Overpressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>–Pump Protection</td>
</tr>
<tr>
<td></td>
<td>Capacitance Manometers</td>
<td>Yes</td>
<td>Yes</td>
<td>–Gas Inventory Control</td>
</tr>
<tr>
<td></td>
<td>Mechanical Gauge</td>
<td>No</td>
<td>Yes</td>
<td>–Secondary Containment Controls</td>
</tr>
<tr>
<td>Vacuum</td>
<td>Pirani Gauge</td>
<td>No</td>
<td>Yes</td>
<td>–Secondary Containment Vacuum Controls</td>
</tr>
<tr>
<td></td>
<td>Penning Gauge</td>
<td>No</td>
<td>Yes</td>
<td>–Secondary Containment Vacuum Controls</td>
</tr>
<tr>
<td></td>
<td>Capacitance Manometers</td>
<td>Yes</td>
<td>Yes</td>
<td>–Ultra High Vacuum Pumping Operations</td>
</tr>
<tr>
<td></td>
<td>Mechanical Gauge</td>
<td>No</td>
<td>No</td>
<td>–Secondary Containment Vacuum Controls</td>
</tr>
<tr>
<td>Temperature</td>
<td>Thermocouple</td>
<td>Yes</td>
<td>Yes</td>
<td>–Uranium Bed Controls</td>
</tr>
<tr>
<td></td>
<td>Resistance (RTD)</td>
<td>Yes</td>
<td>Yes</td>
<td>–Pressure Volume Temperature Calculations</td>
</tr>
<tr>
<td></td>
<td>Vapour Pressure</td>
<td>No</td>
<td>No</td>
<td>–Cryogenic Module Operations</td>
</tr>
<tr>
<td></td>
<td>Strain Gauge</td>
<td>No</td>
<td>Yes</td>
<td>–Liquid Nitrogen Supply</td>
</tr>
<tr>
<td></td>
<td>Silicon Diode</td>
<td>No</td>
<td>Yes</td>
<td>–Cryogenic Module Operations</td>
</tr>
<tr>
<td>Humidity</td>
<td>Aluminium Oxide</td>
<td>Yes</td>
<td>No</td>
<td>–Molecular Sieve Performance</td>
</tr>
<tr>
<td>Flow</td>
<td>Thermal Mass</td>
<td>No</td>
<td>Yes</td>
<td>–Primary Process Flow</td>
</tr>
<tr>
<td></td>
<td>Differential Pressure</td>
<td>Yes</td>
<td>No</td>
<td>–Detritiation Operations</td>
</tr>
<tr>
<td></td>
<td>PT100 Temperature</td>
<td>No</td>
<td>Yes</td>
<td>–Liquid Nitrogen Supply</td>
</tr>
<tr>
<td></td>
<td>Resistance</td>
<td>No</td>
<td>Yes</td>
<td>–Liquid Helium Supply</td>
</tr>
<tr>
<td></td>
<td>Capacitance</td>
<td>No</td>
<td>Yes</td>
<td>–Water Drain Tank</td>
</tr>
</tbody>
</table>
• The JET Machine is protected from overpressure by a ‘two out of three’ pressure switch interlock alarm. Upon overpressure condition, the transfer line will automatically vent to EDS, preventing the machine from reaching atmospheric pressure.

• Operation of the JET Machine is conditional upon operation of EDS as key safety related equipment. EDS availability is monitored using recombiner low temperature and low ventilation flow alarm signals to provide a pulse inhibit request to the JET Central Interlock and Safety System.

• Within the product storage, gas introduction and gas distribution subsystems, calibrated volumes combined with measurements from precision capacitance manometer and resistance thermometer allow the calculation of Pressure, Volume and Temperature gas inventory measurements [5].

The control system, process instrumentation and radiological protection instrumentation are operated from an Uninterruptable Power Supply with a minimum autonomy period of 30 minutes, sufficient to monitor and shutdown the plant safely in the event of total site power failure.

2.2 IONISATION CHAMBERS
Ionisation chambers (ICs) play an important role in AGHS control and protection. The two main types of JET’s purpose built flange mounted IC are small 15cm3 chamber, used to monitor tritium activity in primary process containment for control purposes and large 570cm3 (Figure 1), used to monitor tritium activity in secondary purged containment for evidence of process leakage. In addition commercial ionisation chamber instrumentation is installed on process subsystems including monitoring inlet and outlet of the Exhaust Detritiation System (EDS) using 10000cm3 chambers.

2.3 ON-LINE ANALYTICAL MEASUREMENTS
The main applications of on-line analytical measurements are:

• JET designed hydrogen-oxygen recombination sensors installed on the transfer lines between AGHS and the JET Machine are capable of detecting oxygen on-line at low pressures to warn of process leaks [6].

• On the inlet of the EDS, a commercial grade, non-depleting electrochemical oxygen sensor is interlocked to provide air inlet upon low oxygen level for the purpose of maintaining recombiner efficiency.

• The process gas chromatography subsystem column diagnostics are equipped with Katharometers for control of product valve switching.

3. HARDWIRED INTERLOCK AND ALARM SYSTEM
An independent, non-programmable, hardwired safety interlock and alarm system shuts down equipment to a failsafe condition. Software interlock trips and alarms alert operators in advance of abnormal process conditions before the final hardwired safety circuits are activated. The plant fail
safe condition ensures that the plant remains in a safe state following removal of all electrical power and instrument air to equipment including pumps, valve actuators and heaters etc.

3.1 INTERLOCK CIRCUITS

JET design interlock circuits are relay based in modular form, dedicated to the relevant plant subsystem processes. Relays are energised from a 24VDC supply and fail safe on loss of power. The block diagram in Figure 2 shows the AGHS Hardwired Interlock Modules interfacing with alarm systems, control systems and plant equipment.

3.2 ALARM SYSTEM

The hardwired alarm annunciation panel located in the AGHS control room provides 159 individual alarms to alert the operator that hardwired interlocks have tripped. The alarm panel comprises three categories of alarms with different levels of severity characterised by three different colours demanding appropriate operator response.

A number of critical alarm windows are duplicated on the JET Control Room Incident Desk alarm panel and alert operators during periods of unattended AGHS operation.

3.3 TESTING

Routine 6 monthly functional testing of safety related hardwired interlocks and alarms is an essential feature of the operating safety case. The normal testing method is to raise the process parameter such as pressure or temperature to the trip level in order to demonstrate fault sequence. Where it is impractical to do so, then the trip point of the instrument is adjusted to activate. A control system test program is loaded, per sub-system basis, as part of the test procedure to inhibit software interlocks used to trip equipment in advance of hardwired trips.

Functional testing of installed safety related ICs is carried out using a 3GBq Caesium-137 source contained within a lead-shielded pot positioned near to the chamber for exposure to ionising radiation. The source is capable of triggering the interlock circuits in the majority of applications. A 115GBq Iridium-192 source, capable of promoting sufficient ionisation current for testing chambers under vacuum conditions and those exhibiting memory effect is also used. The Iridium source is supplied and handled by an external radiographer.

4. OPERATION AND MAINTENANCE

In most cases preventative maintenance of instrumentation is generally not possible without interruption of processing unit. Maintenance of instrumentation is carried out on a replacement basis only when faults occur or during planned processing unit interventions so as to keep disruptions to operations at a minimum.

Once instruments have been exposed to tritium, off-site repair or re-calibration at the manufacturer premises is not practicable. Calibration status of general instrumentation can be verified in practice
either: a) against other installed precision instruments, b) against recently replaced standard sensors with valid calibration data.

Ionisation chambers, which are exposed to tritium, experience contamination of inner surfaces leading to reduction in low range sensitivity. Attempts to purge and bake the instrument in situ led to limited success on reduction of tritium retention and range reduction.

Other forms of instrumentation likewise exposed to tritium during operations have demonstrated no detectable changes in performance.

5. ENHANCEMENTS AND FURTHER DEVELOPMENT
Ongoing activities to provide continuous improvements to instrumented systems include the development of on-line tritium monitor for waste water transfer, installation of precision thermal mass flowmeters to EDS ventilation system and replacement of obsolete instruments no longer supported by the manufacturer subject to review. It is found that non-programmable instruments used in hardwired safety interlocks circuits are becoming increasingly difficult to source due to market adoption of programmable devices.

6. SUMMARY
• High integrity equipment is used and faulty instruments are repaired on a replacement basis only to minimise process downtime.
• Ionisation chambers exhibit degradation of performance through exposure to tritium, however these effects on other instrumentation have not been noted.
• Ongoing continuous improvement for instrumentation and protection systems, through operational experience, will aid the continued safety and efficiency of AGHS operations.
• The approaches taken so far have been effective in providing many years of safe and reliable operation.
• Future plant subsystems will be integrated into the AGHS using the same proven control and safety interlock methodology in compliance with current safety standards.

ACKNOWLEDGEMENTS
This work has been conducted under the European Fusion Development Agreement and funded by EURATOM and the UK Department of Trade and industry.

REFERENCES

Figure 1: Jet Design 570cm3 Ionisation Chamber

Figure 2: Ionisation Chamber Panel Display
Figure 3: Uranium Storage Beds Hardwired Interlock Modules