Probable Identification of the Coriolis Momentum Pinch in JET
Probable Identification of the Coriolis Momentum Pinch in JET

H. Weisen1, Y. Camenen2, A. Salmi3, T. Versloot4, P. deVries4, M. Maslov5, T. Tala6, M. Beurskens5, C. Giroud5 and JET EFDA contributors*

\textit{JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK}

1Centre de Recherches en Physique des Plasmas, Association EURATOM - Confédération Suisse, EPFL, 1015 Lausanne, Switzerland
2IIFS/PIIM, CNRS - Université de Provence, Marseille, France
3Association EURATOM-Teke, Aalto University, Finland
4FOM Institute Rijnhuizen, Association EURATOM-FOM, NL,
5EURATOM-CCFE Fusion Association, Culham Science Centre, OX14 3DB, Abingdon, OXON, UK
6Association EURATOM-Teke, VTT, Finland,
* See annex of F. Romanelli et al, “Overview of JET Results”, (23rd IAEA Fusion Energy Conference, Daejon, Republic of Korea (2010)).

Strasbourg, France
(27th June 2011 - 1st July 2011)
1. INTRODUCTION.
In view of mounting evidence for non-diffusive momentum transport processes [1,2] and theoretical predictions thereof [3,4], a broad survey of the JET database was undertaken to ascertain the ubiquity of non-diffusive processes, their parameter dependencies and the consistency of theoretical predictions with observations. The database presented here, as well as the analytical approach, builds on previous JET profile databases, constituted for investigating density peaking [5]. This database, ‘JETPEAK’, contains several hundred steady-state samples used for this study, which provide a comprehensive coverage of the JET operating domain with profile data from CXRS, Thomson scattering (HRTS or LIDAR) and q profiles from EFIT. The data are so far restricted to H-modes and hybrids with NBI power in the range 5-20MW, 0.6<H98<1.4 with operation in deuterium, without additional TF ripple.

2. ANALYTICAL METHOD.
The method is to test whether the normalised gradients follow a dimensionless normalised diffusion-convection equation with a tractable (i.e. limited) number of dependencies, e.g dependencies consistent with the theoretically predicted Coriolis pinch [3,4]. To this effect, we write the local steady state momentum transport equations as:

$$ t - l \Gamma_N = -\chi_\phi \nabla \omega / \omega + lV $$ \hspace{1cm} (1)

Here t is the local torque surface density (N/m) from NBI, l = m_i n_i R^2 \omega is the angular momentum density, \omega the toroidal angular velocity, \Gamma_N is the particle flux associated with the particle source (NBI), \chi_\phi is the radial momentum diffusivity and V is the momentum pinch velocity. Eq.(1) is de-dimensionalised and normalised as:

$$ R \frac{\nabla \omega}{\omega} = -\frac{\chi}{\chi_\phi} \left\{ \frac{Rt}{\chi l} - \frac{R \Gamma_N}{\chi n_i} \right\} + \frac{RV}{\chi_\phi} \hspace{1cm} (2)$$

The LHS of eq.(2) is obtained from CXRS measurements, while the term between brackets, the normalized net dimensionless torque t*-\Gamma_N*, is obtained from a combination of measurements and calculations, including the local heat balance. \chi is a related transport parameter (preferably \chi_i, as hereafter), which is determined from the local power balance. The particle flux term in (2) is a small (~10%) correction to the gross torque from the NBI. The form of eq.(2) lends itself to determining the Prandtl number \chi_\phi/\chi_i and the pinch number RV/\chi_\phi, as well as their parameter dependencies, by means of regression techniques.

3. EXPERIMENTAL SCALING
Figure 1 shows simple fits over the whole database, at two radial positions, aimed at determining only the typical Prandtl and the pinch numbers. The symbols are resolved by the confinement
factor H98, showing that the relationship between torque and \(\frac{R}{L_w} \) does not depend on confinement quality.

The regressions in fig.1 are part of a profile, shown in fig.2, constituted of 7 contiguous intervals over which gradients were evaluated. As \(\varepsilon^{1/2} = (r/R)^{1/2} \), the trapped particle fraction, is an important physics parameter [4], all profiles were re-sampled, using \(\varepsilon \) as the radial coordinate. The last closed flux surface is typically at \(\varepsilon = 0.3 \). The figure shows that while the Prandtl number is close to unity, without a significant radial dependence, the pinch number has a clear radial dependence. The vertical bars indicate the 90% confidence intervals for the regressions.

The magnitude of the pinch is consistent with the one obtained in NBI modulation experiments [1]. Toroidal field ripple scan experiments, in the range 0-1%, have also provided corroborating evidence [6]. The ion losses caused by the ripple produce an edge torque in the counter-I\(_p\) direction, which can be of similar magnitude as the NBI torque, allowing a scan of the torque without significantly altering other plasma parameters. These experiments were consistent with \(P_r \approx 1 \) and \(\frac{RV}{\varepsilon_0} \) rising from near 2 for \(\varepsilon = 0.1 \) to near 8 for \(\varepsilon = 0.3 \) [6].

In order to investigate further parameter dependencies, we tested hundreds of the parameter combinations \(t_i^* - \Gamma_N^* \), \(t_{\text{eff}}^* - \Gamma_N^* \), \(\frac{R}{L_n} \), \(\frac{R}{L_Ti} \), \(\frac{R}{L_Te} \), \(T_i/T_e \), \(\varepsilon \), \(q \), \(s = \varepsilon dq/dr \), \(\nu_{\text{eff}} \), \(\beta \), \(\rho^* \). At most 5 parameter dependencies can be simultaneously obtained with satisfactory statistical significance and relevance. Many similar quality fits are obtained with different parameter combinations as a result of correlations in the database. Typically, combinations including \(t_i^* - \Gamma_N^* \), \(\frac{R}{L_n} \), \(q \), \(\varepsilon \), \(T_i/T_e \) and \(\frac{R}{L_Ti} \) or \(\frac{R}{L_Te} \) provide the best fits. It should be noted that the coefficients for any parameter vary depending on the other parameters of the fit and are not necessarily indicative of the underlying physics dependencies, which may not only be different, but also may not be reducible to simple linear dependencies over the wide JET parameter space. In particular \(t_i^* - \Gamma_N^* \) and \(\frac{R}{L_Ti} \) are correlated and should not be used together in a fit, as the obtained Prandtl number would be well outside the range seen in fig. 2a and most likely unphysical. In fig.2b, we present the best (in terms of \(\sigma \)) 5 parameter fit:

\[
\frac{R}{L_w} \approx 1.2(t_i^* - \Gamma_N^*) + 0.43R/L_n + 13\varepsilon^{1/2} + 0.44q - 1.7T_i/T_e - 2.7
\]

(3)

The first RHS term is the diffusive term, which has a statistical relevance STR of 0.53 (meaning the variation of this term ‘explains’ 53% of the variation of \(\frac{R}{L_w} \)). The following terms may be interpreted as providing the dependencies of the pinch number. We doubt that this approach would allow identifying possible residual stress terms.

4. GYROKINETIC SIMULATIONS.

A representative subset of 420 samples the JETPEAK database was used as input for a series of linear gyrokinetic calculations using GKW [7] for kp = 0.15 & 0.45 assuming a circular geometry and two kinetic species (D and e\(^-\)). The pinch and Prandtl numbers are somewhat larger for kp=0.45
than for 0.15. In fig.4 we see that the predicted pinch number profile (on the basis of the average for kρ=0.15 & 0.45) is similar to the experimental one, although the theoretical pinch is only ~2/3 of the observed one. Fig.5 shows a fair agreement of theoretically expected and observed R/L_w, except for magnitude. Collisional and non-collisional calculations mostly produce similar results.

The theoretical data can be fitted in much the same way as the experimental data, subjecting them to the same correlation issues, as the parameter domain is approximately the same. The best 5 parameter fit for the theoretical pinch is obtained as:

\[\frac{RV}{\chi_\rho} = 0.44R/L_n + 7.7e^{1/2} + 0.39q - 0.1R/L_T - 0.15s - 4.3 \] (4)

The first three of these parameters match three of those representing the pinch in eq.(3), with similar coefficients, further supporting the thesis that the observed pinch may have its origin in the Coriolis drift.

CONCLUSIONS

The database analysis shows that the momentum pinch is ubiquitous. Pinch numbers are low in the core plasma and rise strongly to near 5 at r/a ≈ 0.8. Fair agreement is obtained with simple linear GKW calculations, although the theoretical pinch falls somewhat short of the observed one. The main parameter dependencies (R/L_n, e, q) are consistent with experimental trends, although correlations, errors and non-linearities prevent a definite determination of coefficients. This fair agreement supports the identification of the Coriolis pinch as the likely explanation for the observations. The finding suggests that even a torque applied only at the edge, as e.g. in ITER, may produce a moderately peaked angular velocity profile.

REFERENCES

[1]. T. Tala et al, this conference, P1.139
[2]. T. Tala et al, IAEA FEC 2010, EXC/3-1
[4]. A. Peeters et al, IAEA FEC 2010, OV/5-4
[7]. A. Peeters et al. Computer Physics Communications 180, 2650 (2009)
Figure 1: Fits of eq.(2), showing a diffusive component (slope) and a convective component (intercept a zero effective torque) for $r/a\approx0.45$ (left) and $r/a\approx0.84$ (right).

Figure 2: Average pinch number (black) and Prandtl number (red) for seven radial intervals.

Figure 3: Regression corresponding to eq.(3). Symbols refer to ε intervals as in fig.2. STS: statistical significance, STR: relevance.
Figure 4: Average and std (bars) of Prandt (red) and pinch numbers (black) from GKW.

Figure 5: Sample-by-sample comparison of experimental and modeled R/L_{ω}.

\[\frac{\phi}{\chi} \text{ and RV} \]

\[\epsilon \]

\[R/L_{\omega} \text{ prediction (average for } k_{\rho} = 0.15 \text{ & } 0.45) \]

\[R/L_{\omega} \text{ experiment} \]

- $0.06 < \epsilon < 0.09$
- $0.09 < \epsilon < 0.12$
- $0.12 < \epsilon < 0.15$
- $0.15 < \epsilon < 0.18$
- $0.18 < \epsilon < 0.21$
- $0.21 < \epsilon < 0.24$
- $0.24 < \epsilon < 0.27$