Divertor Heat Load in JET - Comparing Langmuir Probe and IR Data
Divertor Heat Load in JET - Comparing Langmuir Probe and IR Data

S. Marsen1, L. Aho-Mantila2, S. Brezinsek3, T. Eich4, C. Giroud5, M. Groth6, S. Jachmich7, B. Sieglin4 and JET EFDA contributors*

JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK

1Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, 17491 Greifswald, Germany
2VTT Technical Research Centre of Finland, Association EURATOM-Tekes, FIN-02044 VTT, Finland
3FZ Jülich, Institute of Energy Research - Plasma Physics, EURATOM Association, Jülich, Germany
4Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, 85748 Garching, Germany
5EURATOM-CCFE Fusion Association, Culham Science Centre, OX14 3DB, Abingdon, OXON, UK
6Aalto University, Association EURATOM-Tekes, P.O.Box 14100, FIN-00076 Aalto, Finland
7Laboratory for Plasma Physics, ERM/KMS, Assoziation EURATOM Etat Belge, Brussels, Belgium

1st July 2013 – 5th July 2013
The heat flux to the target plates q_p is a crucial design parameter for fusion machines. In attached regimes the majority of the power entering the SOL across the separatrix flows to a narrow region on the divertor target plates. Predictions of heat loads in future machines are typically based on scaling laws derived from experimental data. q_p can be measured by infrared (IR) cameras viewing the target plates. Alternatively, Langmuir probes can be used to determine q_p from the temperature and particle flux measured at the sheath edge in close proximity to the target plates ($<<1$mm).

Measuring q_p with probes involves physics of the sheath in which energy is transferred from electrons to ions. Relating q_p to the electron temperature T_e and the particle flux Γ at the sheath edge leads to the definition of the sheath heat transmission coefficient $\gamma = q_p = T_e \Gamma$. γ can be expressed in terms of plasma parameters [1, 2]:

$$\gamma = \left(2.5 \frac{T_i}{T_e} - \ln \left(\sqrt{2 \pi \frac{m_e}{m_i}} \left(1 + \frac{T_i}{T_e}\right) \frac{1 - j_0^*/j_s}{1 - \delta}\right) + \frac{2(1 - j_0^*/j_s)}{1 - \delta} + \epsilon_{pre} + \frac{\chi_i kT_e}{m_i} \frac{\chi_r}{kT_e}\right)$$ \hspace{1cm} (1)

$\epsilon_{pre} \approx 0.5$ is related to pre-shaeth acceleration of ions, χ_i is electron-ion and χ_r atom-atom recombination energy. T_i is the ion temperature, $m_{e,i}$ the electron and ion mass, respectively. Divertor targets are typically not floating but electrically connected to the vessel. Thus, they can draw a net current j_0 which alters γ compared to a floating target. j_s is the ion saturation current which equals the particle flux to a floating target. Secondary electron emission (δ) and reflections of particles and energy can affect γ and depend on the target material. However, they are neglected in our analysis since they are expected to be very small for shallow field line impact angles and it was shown experimentally in JET that the target material has no measurable impact on γ [3]. Therefore we show data from JET equipped with a carbon divertor and with tungsten as target material.

γ can be derived experimentally by comparing IR and probe data. Reasonable agreement between sheath theory and experiments is typically found in sheath limited regimes with low recycling. But with increasing density they deviate significantly which is typically attributed to an overestimation of plasma parameters by probes.

In JET, the target heat flux is measured by IR thermography with a spatial resolution of 1.7mm. Target probe arrays are installed at 3 toroidal positions with probes at 35 poloidal positions each. They can be configured as triple probes or individually swept single probes. Figure1 shows the probe design on the outer horizontal target. The probes are wedge shaped with an inclination of 13° in order to get a well defined collecting area as compared to flush mounted probes which suffer from extremely shallow field line impact. Regular ohmic monitoring pulses are used to monitor the erosion of the probe tips.

Single probe analysis is based on a least squares fit of an asymmetric double probe characteristic to the data, Eq.2

$$j = -j_s \left(1 + \frac{\alpha (V_{fl} - V_{pr})}{1 - \exp \left(\frac{e (V_{pr} - V_{fl})}{kT_e}\right)}\right) \frac{l - \exp \left(\frac{e (V_{pr} - V_{fl})}{kT_e}\right)}{\alpha + \exp \left(\frac{e (V_{pr} - V_{fl})}{kT_e}\right)} \hspace{1cm} (2)$$

1
\(V_{f1} \) is the floating potential and \(V_{pr} \) is the biasing potential of the probe tip. \(\alpha \) is the ratio of ion to electron saturation current. The parameter \(\delta a \) leads to an effectively increasing probe area with increasing biasing. On the one hand this can be due to an expanding Debye sheath around the probe [4], which is, however, more of an issue to flush mounted probes with effective probe size close to the Debye length. However, finite plasma resistivity can also affect the entire probe circuit causing similar effects on the probe characteristics [5].

L-mode discharges give the best quality data for a comparison of IR and Langmuir probes. Strike point sweeps of \(\approx \pm 2\text{cm} \) on the target are used to create profiles from probe data. At low \(\left(\int ndl5.4 \cdot 10^{19} \text{ m}^{-2} \right) \) an excellent agreement of \(q_p \) from probes and IR was found as can be seen in Fig.2. \(q_p \) from probes in this case was calculated with \(\gamma \) derived from Eq.1 using profiles of \(T_e \) and \(j_0 = j_s \) and assuming \(T_i = T_e \).

The resulting profile of \(\gamma \) together with an experimental \(\gamma_{Exp} = q_{p,IR}/T_e j_s \) is also shown in Fig.2. The shape of the profile with slightly higher values of \(\gamma \) at the peak is related to a net electron current drawn by the grounded divertor tiles. The probe data in this case were analysed enforcing \(\delta a = 0 \). As shown in Fig.3 the inclusion of a finite \(\delta a \) would yield an as good fit of the probe data. However, in this case sheath theory would fail to reproduce the power from IR by probes as shown by the dashed line in Fig.2 (top). The probe bias in this case, i.e. at this \(T_e \approx 40 \text{eV} \), is simply not sufficiently negative for the probe current to saturate, wheter or not \(\delta a \) is finite.

Neglecting \(\delta a \) is further supported by power balance. Estimated target power in Pulse No: 78647 was \(P_{\text{target}} = P_{\text{heat}} - P_{\text{rad}} = 2.1\text{MW} \) which is in good agreement with the sum of power on inner and outer target measured by probes, \(P_{\text{LP,inner}} + P_{\text{LP,outer}} = 2.2\text{MW} \). The situation changes with increasing density. Although the actual target power decreases due to more radiation, probes show increasing power as shown in Fig.4. Up to \(\int ndl = 7 \ 10^{19} \text{ m}^{-2} \) the power balance is fulfilled with \(\delta a = 0 \). At \(\int ndl = 8.4 \ 10^{19} \text{ m}^{-2} \) the probes overestimate the power by \(\approx 25\% \) which is still a reasonable agreement. However, comparing profiles from probes and IR in this case shows a deviation of more than a factor of two at the peak. Looking at the probe characteristics in Fig.3 taken at this density shows rather clearly a non saturation of the ion current. \(T_e \) is here sufficiently low and the inclusion of \(\delta a \neq 0 \) in the analysis turns out to give a better fit of the probe characteristics, reasonable agreement with \(q_p \) from IR and a better power balance.

Going to high recycling regimes at further increased density the power from the probes is significantly overestimated. In this case the probe current saturates and \(\delta a \) cannot fix the power balance. Deriving \(\gamma_{Exp} \) from the direct comparison with IR would yield values as low as \(\gamma_{Exp} \approx 2 \), which is not compatible with sheath theory. Assuming the probes to measure \(j_s \), reliably in this regime puts the root cause on \(T_e \) to be overestimated. It was shown before for JET that, with this in mind, one can estimate the true \(T_e \) from \(q_p;\text{IR} \) and \(j_s \) by assuming a certain value of \(\gamma \) [3]. On the other hand it is argued in literature that this is a regime in which the probes overestimate \(j_s \). This is because with the probe bias, electron heat flux to the probe surface is reduced. Thus, the local electron temperature is raised, enhancing neutral ionization and increasing the ion flux to the probe [6].
It is not within the scope of this paper to resolve this issue. However, since probe data analysis is well known to be a delicate topic, it turns out that comparison with heat flux from IR thermography and a global power balance are a good measure for data validation. Fig.5 shows an application of this exercise in L-mode experiments with N₂ seeding in the divertor.

The power to the target is expected to decrease due to increasing radiation. This is confirmed by probe measurements. However, neglecting δα in the analysis would suggest the power to increase up to intermediate N₂ levels and finally to decrease. This is mainly due to an overestimation of qₚ on the inner target at intermediate levels.

REFERENCES

Figure 3: Probe characteristics measured at $\int ndl = 5.6 \times 10^{19} m^{-2}$ (black) and $\int ndl = 8.4 \times 10^{19} m^{-2}$ (cyan). red and blue are corresponding fitted characteristics enforcing $\delta a = 0$. green and magenta with $\delta a \neq 0$ (solid).

Figure 4: Top - Profiles of q_p on the outer target at $\int ndl = 8.4 \times 10^{19} m^{-2}$. Bottom - Power balance during a density scan comparing probe analysis with $\delta a = 0$ (dashed) and $\delta a \neq 0$ (solid).

Figure 5: Power balance from Langmuir probes during N_2 seeding in L-mode.