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ABSTRACT.

In the last years cameras have become increasingly common tools in scientific applications. They

are now quite systematically used in Magnetic Confinement Fusion, to the point that infrared imaging

is starting to be used systematically for real-time machine protection in major devices. However, in

order to guarantee that the control system can always react rapidly in case of critical situations, the

time required for the processing of the images must be as predictable as possible. The approach

described in this paper combines the new computational paradigm of Cellular Nonlinear Networks

(CNN) with Field-Programmable Gate Arrays (FPGAs) and has been tested in an application for

the detection of hot spots on the plasma facing components in JET. The developed system is able to

perform real-time hot spot recognition, by processing the image stream captured by JET wide angle

infrared camera, with the guarantee that computational time is constant and deterministic. The

statistical results obtained from a quite extensive set of examples show that this solution approximates

very well an ad-hoc serial software algorithm, with no false or missed alarms and an almost perfect

overlapping of alarm intervals. The computational time can be reduced to a millisecond time scale

for 8-bit 496x560-sized images. Moreover, in our implementation, the computational time, besides

being deterministic, is practically independent of the number of iterations performed by the CNN -

unlike software CNN implementations.

1. INTRODUCTION

The continuous progress in camera technologies has resulted in commercial products which can be

easily operated and have performance which are appealing to many scientific applications. In

magnetic confinement nuclear fusion the number of cameras deployed on the various experiments

has increased steadily in the last decades. Nowadays they are routine diagnostics to gather information

about the plasma wall interactions and various plasma phenomena. Since high temperature plasmas

do not emit infrared radiation, IR cameras are very useful tools to determine the surface temperature

of the plasma facing components.

The capability of present day materials to withstand the power loads induced by thermonuclear

plasmas remains one of the major issues investigated by present day Tokamaks in the perspective

of a fusion reactor. This problem, very significant for ITER, is already important on JET and will

constitute one of the central aspects of both the operation and the scientific activity after the

installation of the new Be wall and the W divertor [1]. Therefore developing reliable infrared

thermography diagnostics to determine the surface temperature of the plasma facing components

in the main chamber and in the divertor is a very significant issue for JET future programme. New

image processing techniques, to provide the necessary information for the operation of the device,

has also become a very interesting field of investigation.

On JET the most interesting InfraRed (IR) camera for the development of real time algorithms is

installed on a dedicated endoscope providing a wide-angle view (field of view of 70 degrees) in the

infrared range (3.5 to 5µm). The wide angle view of the system includes the main chamber and
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divertor [2]. The diagnostic consists of an endoscope formed by a tube holding the front head

mirrors, a Cassegrain telescope, and a relay group of lenses, connected to the camera body. To

increase the reactor-relevance of the project, mainly reflective optical components have been chosen,

since they can better cope with high neutron radiation. The global transmission of the endoscope is

higher than 60% and the diagnostic is designed to measure from the JET typical operating temperature

of 200∞C up to a maximum temperature of 2000∞C. The diagnostic spatial resolution is diffraction

limited and, assuming a 10% error in the measured photon flux, an overall spatial resolution of 2 cm

at three meters has been estimated.  A frame rate of 100 Hz at full image size can be achieved and it

can be increased up to 10 kHz by reducing the image size to 128x8 pixels, located on any position in

the field of view. A typical frame acquired by JET wide angle camera is shown in Figure 1.

The kind of image processing required for hot spot recognition can in principle be performed by

dedicated software codes implementing suitable algorithms on serial machines. On the other hand,

traditional software solutions are not always completely satisfactory from the point of view of real

time applications. Their major problems are due to the sequential nature of the execution flow. This

leads to longer computation times and to non deterministic delay since the more complex the image

to be processed is, the longer it takes for the traditional software algorithms to analyse one frame.

This is not an ideal situation for real time applications, because there is the risk that, when the

situation becomes more critical, the response time of the algorithms is less satisfactory. Parallel

systems (e.g., multi-processor computers or computer clusters) can help to reduce computational

times and improve consistency, by dividing the image into parts to be analyzed by different

processors. However, the degree of parallelization is often limited: for example, even if the image

is divided into independently-processable parts, the filters have still to be applied sequentially,

which means having to wait for the completion of the previous processing step before starting with

the following one. Moreover, the algorithms to be applied must be intrinsically parallelizable - not

all algorithms are. For these reasons, a hardware system for image processing intrinsically designed

to be parallel can be advantageous, since it can typically be executed in shorter and more predictable

computation times. The problem with hardware devices is that they obviously are less flexible than

software programs, and therefore much more application-dependent; because it is difficult to find a

single technique which is adaptable to many application fields, hardware devices have limited

applications. However, recent developments in Field-Programmable Gate Arrays (FPGA) technology

have opened new possibilities to hardware designers. FPGAs are programmable digital hardware

devices, which combine the advantages of hardware solutions (speed, parallelism) with the flexibility

of reprogrammability. Of course, the drawback is that performances (in terms of clock frequency)

are lower than application-specific integrated circuits, because the latter are optimized for the task

they have to accomplish. Nevertheless, the results reported in the following show that FPGAs, with

appropriate hardware architectures, can process image streams at frame rates higher than 100 Hz

even in the case of complex images - such as the 496x560-sized pictures taken from JET wide

angle infrared camera.
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In the approach described in this paper, a recently developed computational model, which is very

appropriate for generic image processing and is called Cellular Nonlinear Network (CNN), has

been implemented using FPGAs. A CNN is basically a matrix of differential equations modelling

the evolution of the state of each matrix cell [3]. Each state s value depends on the values of the

states in its neighbourhood (usually, a 3x3 submatrix surrounding the target pixel); this makes the

CNN a powerful tool for local image processing, provided that state values are mapped on pixel

values. An important factor in our choice of using CNNs is that the task accomplished by the CNN

(i.e., the filter to be applied to the image) is specified by two 3x3 matrices and a constant (altogether

being referred to as a template; see section 2) Therefore, it is possible to easily change the kind of

filter implemented by the CNN just by modifying those coefficients.

The CNN which has been implemented on our FPGA is based on the Falcon architecture [4],

which allows for easy parallelization and overlapped execution of subsequent filters, which renders

processing times almost independent of the number of filters applied.

The application of the designed system is the recognition of hot spots using the images collected

by JET wide angle IR camera. This paper describes in details how the CNN has been implemented

using FPGAs, the hot spot recognition algorithm and its performance, which clearly exceed the

results of specific software solutions implemented with the C++ language.

In the remainder of this paper, we first describe the details of the implementation in section 2,

explaining the mathematical model and applications of CNNs, what FPGAs are, why they are suitable

for CNN implementation and the hardware design which carries out the actual computation. Later, in

section 3, the specific algorithm used for hot spot detection, in terms of sequence of CNN templates,

is presented in detail. The results obtained are compared with a reference software algorithm for hot-

spot detection, in order to evaluate the correctness of the CNN results (see section 4).

Finally, a mathematical analysis of the computation time of the FPGA implementation is provided

and compared with classic software algorithms and with software CNN implementations (section

5). Some conclusions are drawn in the last section of the paper.

2. CELLULAR NONLINEAR NETWORKS AND THEIR IMPLEMENTATION USING

FPGAS

2.1. THE CNN ARCHITECTURE

A Cellular Nonlinear Network is a rectangular cell array C(i,j) (see Figure 2), where each cell is

modelled by a nonlinear dynamic system, defined mathematically by state equation, output equation

and boundary conditions:

- State equation:

The most generic state equation can be written:

   (1)( ) ( ) ij
jiSlkC

kl
jiSlkC

klijij zulkjiBylkjiAxx
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where Sr(i,j) is the set of neighbours of cell C(i,j) - usually, the cells within a 3x3 or 5x5 square

centred in C(i,j); xij is the state of the cell; A(i,j;k,l) and B(i,j;kl) are called respectively the feedback

and input synaptic operators; ykl and ukl are the output and input of cell C(i,j); zij is a bias constant.

However, the most commonly used model is the space-invariant CNN, where the A and B operators

do not depend on the (i,j) position, they are simply 3x3 or 5x5 square matrices and the associated

operation is a simple multiplication between the correspondent values in the A or B matrices and

the Sr(i,j) neighbourhood of states or inputs - A, B and Sr(i,j) having the same size.

Therefore, for 3x3-sized matrices and indexing A s and B s rows and column from -1 to 1, equation

(1) becomes:

            (2)

- Output equation

                      (3)

This is called standard nonlinearity. The relationship between xij and yij is shown in Figure 3.

Boundary conditions: This is the set of rules for assigning values to virtual cells - cells which are

located beyond the borders of the array (shown in Figure 2 for 3x3 templates). The need for boundary

conditions comes from the fact that the 3x3 neighbourhood of border cells is partly located outside

of the cell matrix (for example, if we consider the top-left cell, all left and top elements of the 3x3

neighbourhood cannot be mapped onto actual cells). Thus, rules for assigning values to virtual cells

are necessary. A common one is the so-called zero-flux boundary condition: each virtual cell is

created by replicating the closest real cell, in order to avoid sudden value variations which some

algorithms might misinterpret.

The choice of A and B values determines how the state evolves - in other words, determines what

the CNN can accomplish.

In a discrete implementation, the state equation is solved by forward Euler iteration:

                        (4)

where the h time step value models the flow of time at each iteration.

Although CNNs can be applied to several fields, not necessarily scientific, they were specifically

designed to perform real-time ultra-high (more than 10.000 frames per second) frame rate image

processing. After all, the bidimensional cell layout can be naturally mapped to an image matrix, by

associating each cell state to the corresponding pixel s grayscale value; besides, it is possible to

convert classic image processing filters to (A,B,z) triples (in fact, there already exist several CNN

templates libraries).
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As a last mathematical remark, it has been proved [3] that under the following three conditions:

- A and B being linear and memory-less operators (that is, Aij∑xij is a scalar multiplication);

- u(t) and zij(t) being continuous functions of time;

- The output function f(xij) being a Lipschitz-continuous function, the CNN evolves to a one and

unique solution. In our model, these requirements are easily fulfilled, since the A and B operators

perform simple multiplications between their coefficients and the instantaneous value of state and

input u(t) and z(t) are supposed to be constant, because we assume the CNN is designed for static

image processing; the output function is the standard nonlinearity function, which is limited and

therefore Lipschitz-continuous.

Finally, it is possible to prove [3] that, if provided with a memory where to keep temporary

results, the CNN is equivalent to a Turing Machine, in the sense that it can implement any algorithm

that works on a finite set of values. Therefore a CNN with a memory has the same computational

capability as a serial machine of the Von Neumann type. Of course the main competitive advantage,

very interesting for applications such as image processing, is the intrinsic parallelism.

2.2. THE FPGA TECHNOLOGY

The basis for FPGA technology was first introduced by Xilinx in 1985, under the name of Logic

Cell Array (LCA). That architecture, which since then has been constantly improved and extended,

consisted of an array of relatively simple functional blocks, interconnected by a network of

programmable switches for input-output redirection; however, though the blocks were very simple,

programmable interconnections allowed the implementation of complex applications. Present day

FPGA architectures are usually classified according to logic-block granularity and routing architecture.

Coarse-grained FPGAs use high-functionality blocks, whose large number of inputs on the other

hand require greater routing resources; whereas fine-grained FPGAs are made of very simple blocks,

which allow for better block resource usage, but require more die space for the interconnection

network. The routing architecture (which strongly influences performances, since signal propagation

delays can be very high if the interconnections are poor) defines three classes of FPGAs: row-based

FPGAs, symmetric FPGAs and cellular FPGAs, which differ from each other by the type of logic

block they use and by the predictability of net delays. However, independently of their internal

architectures, FPGAs block arrays are always surrounded by a layer of input/output blocks, which

allow for communication with external devices. Xilinx Virtex-family FPGAs, which are the ones

used for the implementation described in this paper , provides I/O blocks supporting 16 standards

such as LVTTL, AGP, PCI, HSTL and SSTL [5]. Moreover, another reason why we decided to use

Virtex-family devices, and specifically the XC4VSX35 one, is the presence of a high number (192

on the device used) of so-called XtremeDSP blocks, each of which contains a 18x18 bit multiplier,

an adder and an accumulator. Such blocks greatly improve performances and chip-usage of

computation-bound application, such as image processing.

Of course, one of the main advantages of FPGAs is the re-programmability, which makes them
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a very flexible tool for implementing modules with variable architecture and internal structure,

such as a CNN, one of whose best features is the capability of easily adapting to the data to be

processed and to the algorithm to be run. Xilinx provides a set of useful software and hardware

design tools, such as the IP Core Generator, a software utility which creates netlists for common

hardware modules (for example, shift registers, RAMs, etc) and the System Generator, a Matlab

Simulink extension for graphical hardware design (even though the CNN core was written in VHDL,

we used System Generator blocksets for interfacing the CNN black box  with the external world)

and for hardware/software cosimulations (in which the computation is divided between Matlab -

which transfers the test images to the FPGA - and the FPGA itself - which performs the actual

calculations).

2.3. THE CNN IMPLEMENTATION USING FPGAS

Our CNN implementation on FPGAs is based on the Falcon architecture [4], which in turn extends

the Castle architecture [3] (originally developed by CNN pioneers Leon Chua and Tam s Roska)

by making it possible, thanks to the FPGA flexibility, to configure the bit width of state and template

values, the width of the CNN cell array, the number of stored templates and the number and

arrangement of processor cores (which will be described in detail later). In our implementation, the

state value of the cell is equal to its output value and is limited in the [-1, 1] range, according to the

so-called Full Signal Range (FSR) model.

Thus, the discrete-time state equation becomes:

        (5)

In order to reduce the number of calculations, the A and B template matrices are modified so that

they intrinsically include the time step value. The modified template matrices become:

                       (6)

and the state equation can be split into two parts:

                      (7)
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The main advantage of this solution is that, if the input is constant (as it is in our application, since

we process images one by one), then the gij value is also constant and can be computed only once,

at the beginning of the execution of the template, greatly reducing the computation load for the

following iterations.

The Falcon architecture is basically an array of processing cores. The input image is divided

among the array s columns, in order to increase parallelism, whereas each row performs an algorithm

iteration (see Figure 4) - that is, in order to iterate the execution of a template ten times, ten core

rows would be needed, independently of the number of columns. The simplest arrangement contains

one column (that is, the image is not divided into pieces to be independently processed) and a

number of rows equals to the number of desired iterations.

The basic computing unit is called a core, and it executes a full iteration of the state equation. A

core takes as input the sequence of states from the past iteration (or the template s initial state), the

sequence of gij constants associated to the corresponding states and a start-in signal, which notifies

the beginning of the computation. A core outputs the newly evaluated states, the corresponding

constants (unchanged) and a start-out signal. All cores in each row are synchronized by a set of

control units (which implement finite-state machines), each of which controls a specific part of the

computation.

The internal architecture of a core is shown in Figure 5:

The memory unit contains three shift registers, whose size is equal to the width of the input

image. Inputs serially enter the upper-most shift register and traverse all shift registers, and at each

moment, the outputs of the shift registers contain a set of three vertical pixels, which are then

passed on to the mixer unit.

The mixer unit takes three states at a time from the memory unit and arranges them for the arithmetic

unit (which does the actual computation), in such a way that every three clock cycles the arithmetic

unit has all the values it needs to compute a new state.

The arithmetic unit simply performs the computation of the new state value, according to the modified

discrete-time state equation (7).

3. THE HOT-SPOT RECOGNITION ALGORITHM IMPLEMENTED USING THE CNN

The implementation of the CNN architecture with FPGA, described in the previous section, has

been applied to the issue of hot spot detection in JET. The images analysed have been collected

with JET wide angle infrared camera.

The implementation of a hot spot detector with the CNN consists basically of finding a sequence

of templates which can identify the critical regions inside the camera field of view with sufficient

reliability. With regard to the algorithm, which has been developed to identify the hot spots, at first

the input image is thresholded according to temperature parameters, which can be defined by the

user depending on their needs. Thanks to the camera calibration data, which allows a temperature-

grayscale value mapping, the grayscale input can be converted to a temperature matrix. A first
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threshold is applied so that the pixels with temperature lower than 500∞C are blackened. A second

threshold is applied to the region of the image where the divertor is located and blackens all pixels

with temperature lower than 800∞C (since the divertor is designed to tolerate higher temperatures

than the rest of the vacuum chamber). Since thresholding assigns a pixel s new values according to

a static rule and depending only on the pixel s current value, there is no need to apply a CNN

template for this step. Figure 6 shows the output of the threshold filter.

After thresholding, the binary image contains white pixels where the temperature is over the

safety threshold. However, the presence of white pixels does not necessarily imply the presence of

a full-blown hot spot. It is necessary to check the size of the hot region and how long the region

remains above the critical temperature, before considering it a hot spot worth triggering an alarm.

Another problem is that several small non-contiguous regions might actually belong to the same

hot spot if they are close enough.

The first template applied is a variation of the PointRemoval [6] template. The original template

removes isolated black pixels; we modified the zij parameter so that the template actually removes

all black pixels which have less than two black neighbours. This template is applied because isolated

pixels (or isolated pairs of contiguous pixels), though they are generally negligible for hot spot

discrimination, can cause problems to the following templates. Only one iteration of this template

is executed.

The second template applied is a morphological operator [8] called DirectedGrowingShadow

[6]. Basically, it increases the size of the object by creating a shadow  which can be directed in

any desired direction. In our case, we tuned the template s coefficients so that the object is expanded

more horizontally than vertically, since we empirically found that this choice allows a better detection

of hot spots on the inner limiter of JET vacuum chamber. This template is executed for six iterations.

The application of this template allows merging objects which are sufficiently close into a single

bigger object. The main problem with this template (and, in general, with all morphological operators

which increase the size of an object) is that it modifies the original image by adding virtual

pixels, which have no physical correspondence in the input image. However, this approach, if

properly managed, provides acceptable results, since in the worst case it will detect false alarms,

but never miss any.

The third template is called ConcaveFiller [6], which fills object cavities with black pixels. The

purpose of this template is to avoid that the following shrinking phase might separate previously-

unified objects. The CNN performs four iterations of this template.

The fourth template being applied has the task of reducing objects, taking their size back to the

original (that is, before it was increased) scale. Actually, the template name is ObjectIncreasing [6];

however, the template is designed to consider an object as a set of black pixels. Since our objects

are actually white, the template will consider them as holes  to be filled (the only real object being

the black background), which has the effect of reducing the size of the hot regions. Two iterations
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of this template are performed, which approximately compensates for the effects of

DirectedGrowingShadow.

After these four templates, the output image consists of a set of contiguous objects representing

possible distinct hot spots. At this point a last template called SmallObjectRemover [6] is applied. It

allows discriminating between regions according to their size, so that only regions which are too

small are removed. The number of iterations performed by this template can be chosen according to

the desired degree of safety. For example, the optimal number of iterations (that is, the one which

minimizes the difference between the reference algorithm and the CNN algorithm) is ten. However,

it is possible to tune this parameter so that the discrimination criterion is less strict (e.g., one could

lower the number of SmallObjectRemover iterations); this might lead to the detection of false alarms,

but guarantees that no real alarms are missed. Section 4 shows statistical results about two possible

choices of the setting of the number of SmallObjectRemover iterations.

After this template sequence has been executed, searching for hot spots is just a matter of checking

whether there are still white regions in the output image. Figure 7 shows the output image for each

template.

The described algorithm allows verifying whether a single image contains hot-spot-like regions.

However, for such a region to be actually a hot spot, it is required that it persists for a certain time

- not for just a frame. The problem is that a CNN like the one used is only able to process an image

at a time - in this sense, it is without memory. The solution to this problem is based on a simple

consideration: if a pixel belongs to a hot spot, then, in our thresholded image, it will stay white for

a certain number of consecutive (say, N) frames; therefore, the mean of the grayscale intensity

value for that pixel over the last N frames will have to be above a certain threshold. If a region

becomes white for just a single frame, than the mean value of the pixels in that region over the last

N frames (with N being sufficiently large) will be under the threshold. So what is actually provided

as input to the CNN is not a single frame, but a frame obtained by calculating the mean of the last

N (in our implementation, four) frames. If the CNN detects a hot spot on this image, it will mean

that a hot region must have persisted for at least the last four frames, which is enough for us to say

that it really is a hot spot.

It is worth mentioning that all the described parameters can be easily modified by the user to meet

their requirements.

4. PERFORMANCE OF THE DEVELOPED ALGORITHM FOR THE HOT SPOT

DETECTION

In order to validate the results of the CNN algorithm, it is necessary to create a suitable database of

videos where hot spots are present. To this end, 10 videos of the IR wide angle camera, representative

of the typical regimes of JET operation, have been analysed manually. About 12100 frames have

been scrutinised with the help of experts, to determine which objects in the images are really hot

spots. Moreover, to have a term of comparison for the computational aspects of the CNN



10

implementation on the FPGA, an algorithm has been written in C++ and run on a serial machine to

analyse the same videos. The devised algorithm is relatively simple; first a typical thresholding

operation is implemented using the same two thresholds used in the CNN implementation. Then a

clustering step is applied to the surviving pixels in order to gather those belonging to the same

potential hot region. This is the most delicate part of the method since the hot spots can appear in

the images as a series of small objects. A specific sorting algorithm has been developed to solve

even the most delicate situations. The global properties of each region are then classified in a

dynamical array. In this way the evolution of the critical regions can be followed to decide whether

a certain object in an image persists long enough to be considered a real hot spot. An example of the

obtained results is shown in Figure 8.

The accuracy of this algorithm is very high and the list of hot spots identified is perfectly consistent

with the manually-created database. For this reason, we have used these results as reference data

for the comparison with the CNN algorithm.

The CNN algorithm described above produced results almost identical to the reference data. In

particular, no false alarms or missed alarms have been detected. Table 1 compares the alarms

recognized by the reference algorithm to those recognized by the optimal configuration (in the

sense that it minimizes the differences from the target results) of the CNN, and Table 2 shows the

high degree of coincidence between the two result sets. It is possible to see that the alarm intervals

almost perfectly overlap, which proves the quality of the CNN solution in approximating the software

algorithm. The performance of the CNN optimised algorithm can therefore be certainly considered

more than adequate, in terms of success rate, for the real time detection of hot spots

Table 1: Comparison between the alarms detected by the reference algorithm and by the optimal CNN algorithm. The
numbers in the two left columns identify the frames in which a hto spot has been detected.

Pulse Number of frames Reference alarms CNN alarms
65000 800 89-121 90-119
65409 800 100-118

394-424
101-117
392-424

65410 800 98-118 102-118
65411 800 98-120 102-119
65412 800 97-119 100-119
65420 800 98-119 101-119
65430 1600 No alarm No alarm
66734 1700 204-252 203-254
66866 2000 250-287 250-288
66867 2000 255-289 255-291
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Table 2: Statistics on the overlapping of the alarm intervals detected by the reference algorithm and by the optimal
CNN algorithm. The numbers in the two left columns identify the frames in which a hto spot has been detected.

As we said in section 3, it is possible to tune the CNN algorithm so that the hot spot discrimination

criterion is less strict, which leads to earlier (in terms of frame number) detection of hot spots, but

increases the chance of false alarms. Table 3 and Table 4 show the results obtained by lowering the

number of SmallObjectRemover iterations from ten to eight. You can see that the detected alarm

intervals are in general slightly wider than the reference ones, and. in most cases. even more precise

than the ten-iteration configuration; however, for pulse 66734, the alarm detection begins twenty

frames earlier than the actual alarm interval, which sensibly influences the overall statistics, and,

most importantly, may be enough to consider it a false alarm.

Table 3: Comparison between the alarms detected by the reference algorithm and by the “safer” version of the CNN
algorithm.

Pulse Hot-spot overlap ratio Total overlap ratio
65000 30/33 = 91% 797/800 = 99%
65409 17/19 = 89%

31/33 = 94%
796/800 = 99%

65410 17/21 = 81% 796/800 = 99%
65411 18/23 = 78% 795/800 = 99%
65412 20/23 = 87% 797/800 = 99%
65420 19/22 = 86% 797/800 = 99%
65430 - 1600/1600 = 100%
66734 49/52 = 94% 1697/1700 = 99%
66866 38/39 = 97% 1999/2000 = 99%
66867 35/37 = 95% 1998/2000 = 99%
Total 274/302 = 90.7% 12072/12100 = 99.8%

Pulse Number of frames Reference alarms CNN alarms
65000 800 89-121 88-121
65409 800 100-118

394-424
99-118
392-426

65410 800 98-118 98-118
65411 800 98-120 97-119
65412 800 97-119 96-119
65420 800 98-119 95-119
65430 1600 No alarm No alarm
66734 1700 204-252 183-254
66866 2000 250-287 250-288
66867 2000 255-289 255-291
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Table 4: Statistics on the overlapping of the alarm intervals detected by the reference algorithm and by the “safer”
version of the CNN algorithm.

5. THE COMPUTATION TIME REQUIRED BY THE FPGA IMPLEMENTATION OF

THE ALGORITHM COMPARED WITH OTHER SOLUTIONS

The algorithm in C++ to be run on a serial machine presents very good performance in terms of

accuracy in detecting the hot spots.The main drawback of the serial algorithm is its strong dependence

of its computational time on the contents of the images and in particular on the number of pixels

above threshold to be processed. This is summarized in Figure 9, in which the computational time

is plotted versus the number of processed pixels.

This strong dependence can disrupt the operation of the algorithm as is shown in the example of

Figure 10.

The implementation of a hot spot recognition algorithm by means of CNNs has two main

advantages over a software implementation using traditional sequential CPUs or DSPs: independence

of the computational time from the image content and therefore deterministic computational times.

- The content of the image does not influence the computation time. This is because an algorithm

implemented with a CNN consists of the iterative application of the same equation.  The actual

values to be computed do not have any influence on the speed of the final calculation. On the

contrary, software algorithms analyze the content of the image in order to find interesting regions,

which makes computation time dependent on the given input. A CNN algorithm in a certain sense

transfers complexity from the algorithm itself (which, for CNNs, is always the same) to templates

- or rather, to the choice of templates.

- Computation times are deterministic. This is a direct implication of the previous considerations.

Since the CNN iteration algorithm does not depend on the data to be processed, it is possible to

calculate execution times offline. Of course, a software algorithm can be designed and optimized

according to the task it has to accomplish, while generally the CNN is a sort of approximation of an

ad-hoc algorithm. Nevertheless, CNNs have proved to be suitable for image processing, thanks to

Pulse Hot-spot overlap ratio Total overlap ratio
65000 33/34 = 97% 799/800 = 99%
65409 19/20 = 95%

31/35 = 89%
795/800 = 99%

65410 21/21 = 100% 796/800 = 99%
65411 22/24 = 92% 798/800 = 99%
65412 23/24 = 96% 799/800 = 99%
65420 22/25 = 88% 797/800 = 99%
65430 - 1600/1600 = 100%
66734 49/72 = 68% 1677/1700 = 99%
66866 38/39 = 97% 1999/2000 = 98%
66867 35/37 = 95% 1998/2000 = 98%
Total 293/331 = 88.5% 12059/12100 = 99.6%
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the fact that their operators (templates) can be customized to perform almost any task.

As far as the comparison between CNN on FPGAs versus implementations on serial computers

is concerned, the advantages of the FPGA choice are a bit more subtle. This is because new

computation-oriented processors (such as DSPs) have been developed, which allow for optimization

of memory usage and access and quick execution of operations (such as multiplications) that would

require several clock cycles on general-purpose processors. However, our time estimation, presented

in the following, indicates that a CNN implementation on FPGA is actually faster than a DSP

implementation.

First of all, in our design, a single processing core is able to compute a new state value every

three clock cycles, which is quite difficult to obtain with a DSP, not only because of the number of

operations to be performed in order to compute new state values, but also because memory accesses

require a considerable amount of time, whereas the Falcon architecture s memory and mixer units

allow for efficient storage and presentation of values to the arithmetic unit. However, DSPs can

usually reach a higher clock frequency than FPGAs; so, for the sake of argument, let us suppose

this compensates for the time required of computing new states. Even with this assumption, there

are two more important factors in favour of the FPGA choice.

First of all, the core-array architecture makes it easy to add new core columns in order to divide

processing among them. If the execution of the CNN algorithm on the full image on a single-

column array takes T seconds, the execution on C columns would take T/C seconds. With an array

of DSPs it is difficult to obtain the same reduction in computational time, because processors

would need to concurrently access the memory (which causes longer waiting intervals) and to

communicate between each other - all things that on an FPGA require no time, since the hardware

architecture can be (and has been) designed to perform inter-core communication during normal

computation. Moreover, as far as costs are concerned, adding N core columns is just a matter of

changing a VHDL design file, while adding N DSPs requires additional hardware.

The second advantage of FPGA-CNNs over DSP-CNNs is probably even more important than

the previous one. Let us suppose the image to be processed is 496x560 pixels in size like the case of

JET IR camera. In terms of clock cycles, the time required for a CNN iteration on our architecture

can be computed as the sum of the two terms Tt and Tc which are defined as:

- Tt (transient), the time needed for the first output to be made available at the output by the arithmetic

unit

- Tc (computation), the time needed for computing all following new state values, that is 3.496.560

≈ 106 (the 3 .  factor is there because every new value requires three clock cycles to be computed).

Tt time is computed as the sum of the following values:

- The time required for filling the memory shift registers. At the beginning of the computation, the

first two shift registers are both filled with the first line, in order to satisfy the zero-flux boundary

conditions, so this time equals 3.2.496≈3000;- The time required for the mixer unit to arrange the

first inputs to the arithmetic unit, which is 9 clock cycles;
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- The time required for the arithmetic unit to compute the first state value, which is about 20 clock

cycles (the multipliers  latency is set to 18 clock cycles, which is a very high value, but allows for

modification of state width without having to change the timing control units).

Overall, the Tt time is about 3000 clock cycles, which is very short compared to Tc.

Even if we suppose that a CNN software implementation can run an iteration as fast as the CNN

can, there is still a major difference which makes the FPGA implementation much better: As soon

as the first output is ready from the arithmetic unit, the next core row can begin to process it. A DSP

has no way to do this, because its execution flow is strictly sequential, so it has to wait until the

previous iteration has been completed before beginning the new one. This means that if an algorithm

requires 25 iterations (a value comparable to the case of the algorithm for the hot spot identification),

the FPGA implementation can run it in 25.Tt + Tc (that is, each iteration has to wait only until the first

output of the previous iteration is evaluated), whereas the DSP implementation would take 25.Tc,

which is about 25 times the FPGA computation time, since Tt is negligible compared to Tc.

Finally, some considerations about the processing performance of the algorithm. Our design was

synthesized for a Virtex-4 XC4VSX35 FPGA mounted on an ML402 evaluation board. The board

provides an external oscillator socket and a built-in 100MHz oscillator, that latter being that which we

used as clock signal to the FPGA. We have already estimated the number of clock cycles required to

process a single image, which is around 106. A million clock cycles at 100MHz means 106.10-8 s = 10-

2 s = 10ms. So, the maximum input frame rate is 100 Hz, which is already a very high value for most

cameras. Moreover, the previous calculations assume a one-column core array, that is, no parallelism.

As we said earlier, if we divide the image among N columns, the computation time is exactly reduced

by N times, which means the maximum input frame rate rises up to N.100Hz. For example, with ten

columns it would be possible to process 1kHz image streams, and of course, it is still possible to add

more columns to the core array - the upper limit being the size of the FPGA chip.

CONCLUSIONS

The evolution of camera technology has made them a common tool in Magnetic Confinement

Fusion, and in our work we have analysed a system for real-time image processing, based on an

implementation of the Cellular Nonlinear Network paradigm on Field Programmable Gate Arrays

devices, and tested it on a hot spot recognition application for JET. The statistical comparison

between a software recognition algorithm, whose results have been taken as reference data, and the

CNN algorithm shows the accuracy of this solution, which provides results that are almost identical

to the target ones.

The results show that the CNN can approximate very well traditional software algorithms for

hot spot recognition, with the considerable advantage of the processing time being independent of

the content of the image and deterministically computable.

The deployment of the algorithm on FPGA devices has the advantage of hardware implementation

(which provides fast execution and parallelism) and flexibility, thanks to the reprogrammability
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feature of FPGAs, which allows the adaptation of the CNN algorithm to the specific application.

Finally, we have shown a performance comparison involving classic software algorithms and DSP

CNN implementations; the  FPGA implementation of the CNN turns out to be superior to both,

thanks to the aforementioned advantages of CNNs over classic algorithms and to the enhanced

parallelization ability of the FPGA with respect to DSPs.
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Figure 3: CNN cell output.Figure 2: CNN array and virtual cells, shown in a lighter
shade of blue.
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Figure 1: Example of image acquired by JET IR wide angle camera.
The white pixels indicate regions of high surface temperature.
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Figure 4: Core array architecture. Image division and
iteration chain.
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Figure 5: Core architecture.

Figure 6: Application of the temperature threshold filter (at 300oC) on an input image.
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http://figures.jet.efda.org/JG09.397-4c.eps
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http://figures.jet.efda.org/JG09.397-6c.eps
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Figure 7: Top-left: Zoom of thresholded input; Top-center: Application of our variant of PointRemoval; Top-right:
Application of DirectedGrowingShadow; Bottom-left: Application of ConcaveFiller; Bottom-center: Application of
ObjectIncreasing; Bottom-right: Application of SmallObjectRemover.

http://figures.jet.efda.org/JG09.397-7c.eps
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Figure 8: The first image is the original KL7 image; the
second one is the threshold image with three different
shades of gray: black for pixels whose temperature is
lower than the first threshold; grey for pixels higher than
the first threshold and white for pixels higher than the
second threshold. On the right the final processed image
is shown; each rectangle is drawn by the algorithm and
represents how the algorithm separates the hot regions.

Figure 10: In traditional serial algorithms, problematic
frames can make computation time rise and become
unacceptable.

Figure 9: Computational time versus the number of pixel
processed by the serial algorithm.
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