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Highlights 

• A theoretical interpretation is presented for the observed deep cracking feature presented 

of tungsten monoblock at 20 MW/m². 

• A two-track modelling approach is employed where deep cracking is thought to be a 

consecutive process of crack initiation and crack growth. 

• The fatigue lifetime to crack initiation on the armor surface and the crack tip load of 

brittle fracture are assessed. 

• Numerical predictions in this study agree well with the experimental observed findings. 

Abstract 

The HHF qualification tests conducted on the ITER divertor target prototypes showed that the 

tungsten monoblock armor suffered from deep cracking due to fatigue, when the applied high-

heat-flux load approaches 20 MW/m². In spite of the critical implication of the deep cracking of 

armor on the structural integrity of a whole target component, no rigorous interpretation has 

been given to date. In this paper, a theoretical interpretation of the observed deep cracking 

feature is presented. A two-track modelling approach is employed where deep cracking is 

thought to be a consecutive process of crack initiation and crack growth, which is assumed to be 

caused by plastic fatigue and brittle facture, respectively. The fatigue lifetime to crack initiation 

on the armor surface and the crack tip load of brittle fracture are assessed as a function of crack 

length and heat flux loads. The potential mechanisms of deep cracking are discussed for a 
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typical slow transient high-heat-flux load cycle. It is shown that the quantitative predictions 

delivered in this study agree well with the observed findings offering insight into the nature of 

tungsten armor failure.  

 

Keywords: divertor target, tungsten armor, high heat flux loads, fracture mechanics, crack, 

plastic fatigue  

 

1. Introduction 

Maintenance of structural integrity under high-heat-flux (HHF) fatigue loads is a critical concern 

for assuring the reliable HHF performance of a plasma-facing divertor target component. Loss of 

structural integrity may lead to structural as well as functional failure of the component. Such 

failure is difficult to predict theoretically, unless material parameters and constitutive laws of 

damage (and cracking) are well defined. Thus, the structural integrity of a target is evaluated 

primarily on an empirical basis by means of HHF fatigue tests. For sensible interpretation of the 

experimental findings, however, rigorous theoretical scrutiny is still desired.  

Recently, a series of HHF fatigue test campaigns have been conducted for the qualification of 

tungsten monoblock target technology developed for the full-tungsten divertor of ITER [1, 2]. 

The design specification of HHF fatigue defined for the ITER tungsten target is as follows:  

5000 cycles at 10 MW/m2 (stationary thermal load)  

300 cycles at 20 MW/m2 (slow transient thermal load)  

The results of the HHF fatigue tests, which were obtained using small- or medium scale mock-

ups, showed that the specification of HHF fatigue life could be a demanding requirement in the 

case of the slow transient thermal load (20 MW/m2) whereas the stationary load (10 MW/m2) 

indicated no serious challenge in terms of fatigue performance [3, 4]. Hence, we will focus our 

discussion on the HHF fatigue at 20 MW/m2 only in what follows.  

The previous post-mortem investigation of the tested mock-ups showed that the tungsten armor 

blocks experienced fatigue cracking at 20 MW/m2 [3]. The cracks were initiated at the armor 

surface and grew toward the cooling tube in the vertical direction (see Fig. 1). Initially several 

small cracks were formed on the surface, but a single crack grew further as major crack reaching 

a macroscopic length. After several hundreds of HHF load cycles at 20 MW/m², the major crack 

almost reached the copper interlayer adjacent to the tube. The site of major cracks was located at 
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the mid-region of the monoblock.  

 
Fig. 1. Metallographic cross section of a prototypical ITER divertor target component after HHF 

test at 20 MW/m² (300 HHF load cycles) [3].  

Metallographic analyses of the tungsten block cross sections revealed that the upper part of the 

armor block underwent an apparent microstructural change during the HHF loading at 20 

MW/m². Roughly, one-third part of the armor block from the top surface turned out to be 

recrystallized due to severe thermal exposure. The near-surface region exhibited a characteristic 

pattern of plastic grain deformation while the feature of crack growth indicated a brittle failure. 

From this finding, it was speculated by the test team that the cracks on the tungsten surface had 

been initiated as a result of plastic low cycle fatigue (LCF). A possible scenario of cracking 

mechanism by LCF and thermal stress could be reconstructed as follows:  

1. The surface of armor block is excessively heated up under the HHF load of 20 MW/m². 

The temperature of the surface rises so strongly that the surface layer of tungsten armor 

loses most of its yield strength due to thermal softening [5].  

2. During heating plastic yield occurs in the near-surface region due to thermal stress.  

3. Upon cooling plastic yield continues due to plastic residual stress.  

4. In the course of subsequent HHF loading cycles plastic strains are accumulated locally in 

the near-surface layer producing fatigue damage and eventually cracks. Cracks may also 

be formed at preexisting flaws under applied stress, though less plausible [6].  

5. One of the cracks with preferred crack tip stress intensity grows further.  

6. Crack growth is promoted by the brittleness of tungsten. Ductile-to-brittle transition 

(DBT) of tungsten during cooling promotes the cracking.  Cracking is more critical for 

the recrystallized tungsten. 

Now, the question is whether this scenario is physically possible or not. The aim of this paper is 

to answer this question by delivering the quantitative assessments of the plastic fatigue lifetime 

of tungsten armor surface and the driving force of cracking in the tungsten armor block. To this 

end, a full HHF load cycle is simulated by means of coupled thermal and (fracture-) mechanical 
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3D finite element analyses (FEA). As reference FEA model, one of the standard ITER target 

mock-ups is used for direct comparison with the previous experimental results. For comparative 

study, the assessment is made for a range of HHF loads between 10 and 20 MW/m².  

In the first part of the study, the fatigue lifetime of armor surface is estimated to judge whether a 

fatigue crack can be formed by LCF within the range of tested HHF load cycles. In the second 

part, the crack tip load is computed and compared with the fracture toughness to judge whether a 

major crack can further grow reproducing the observed fracture pattern.  

2. Model for finite element analysis  

2.1. Geometry, FEA mesh and materials  

The geometry of the present FEA model was adopted from the ITER divertor target design. The 

target component is a duplex structure consisting of tungsten monoblock as armor and CuCrZr 

alloy cooling tube as heat sink. A symmetric quarter part model (half width and half depth) was 

used as illustrated in Fig. 2. for the sake of brevity. The dimension of the test mock-ups used for 

the HHF tests in [4] was considered for the current modelling. The single tungsten block has the 

dimension of 28×28×12 mm³. The cooling tube has a thickness of 1.5 mm and an inner diameter 

of 12 mm, while the thickness of the copper interlayer is 1 mm. The shortest distance from the 

armor surface to the interlayer is 6.5 mm. Commercial FEA code ABAQUS was employed. The 

3D model consisted of roughly 19000 quadratic brick elements.  

 
Fig. 2. Geometry and mesh of the FEA model (symmetric quarter part model).  
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Tungsten was assumed to be linear elastic and ideal-plastic whereas kinematic hardening was 

not taken into account due to the lack of material data. This assumption can be justified by the 

fact that the surface experiences extremely high temperature losing the memory of internal state 

variables (e.g. hardening variables) during each HHF loading. As the upper part of the tungsten 

block was assumed to be recrystallized, two different sets of plastic material data were used for 

the tungsten armor: recrystallized grade for the upper part and stress-relieved grade for the lower 

part. The thickness of the recrystallized layer was varied from 0 to 4 mm.  

Precipitation-hardened CuCrZr alloy was considered for the heat sink tube. Soft copper was 

assumed for the interlayer. The combined non-linear isotropic and kinematic hardening law was 

applied for the copper and copper alloy where Frederick-Armstrong type kinematic hardening 

constitutive law was assumed [7-9]. Selected material parameters are listed in Table 1.  

Table. 1. Properties of the considered materials at selected temperatures [10-12].  

 Tungsten1(recrystallized2) CuCrZr3 Copper4 

 20°C 400°C 1200°C 2000°C 20°C 400°C 20°C 400°C 

Young’s modulus 

(GPa) 
398 393 256 285 115 106 115 95 

Yield stress (MPa) 1384 

(377) 

947 

(362) 

346 

(223) 

57 (70) 273 238 3 3 

Q* (MPa)     -43 -68 76 36 

b*     6 10 8 25 

C*(MPa)     148575 117500 64257 31461 

γ*     930 1023 888 952 

Heat conductivity 

(W/mK) 
173 140 105  318 347 379 352 
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Coefficient of 

thermal expansion 

(10−6/K) 

4.5 4.63 4.98 5.43 16.7 17.8 17.8 18.1 

1 Rolled and stress-relieved state. 
2 The ultimate tensile strength of recrystallized tungsten is used as yield stress assuming a pre-hardened state. 
3 Precipitation-hardened state, the reference alloy: Elmedur-X (code: CuCr1Zr, Cr: 0.8%, Zr: 0.08%). 
4 Softened by annealing at 700°C for 1 h. 
∗ Material parameters entering the Frederick-Armstrong constitutive model. 

 

2.2. Loads and boundary conditions 

The full thermal history of a typical target mock-up was considered for modelling. The thermal 

history includes fabrication, stand-by, HHF loading and cooling stages as illustrated in Fig. 3. 

Effective stress-free temperature was assumed to be 450 °C that corresponds to the temperature 

of prime-ageing. The thermal history consists of four steps as follows: 

1st step: cooling from the stress-free temperature to room temperature.  

2nd step: pre-heating to the stand-by temperature.  

3rd step: HHF loading.  

4th step: cooling to the coolant temperature.  

The main applied heat flux load was 20 MW/m², but 10 and 15 MW/m² were also considered for 

comparison.  

 
Fig. 3. Schematic illustration of the thermal history considered for modelling.  

 

The real cooling condition was assumed that was actually applied for the HHF test. The cooling 

parameters are as follows. 
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- pressure: 3.3 MPa  

- temperature: 120 °C  

- velocity: 12 m/s.  

The selected values of heat transfer coefficient calculated using Sieder/Tate [13] and CEA/Thom 

[14] correlations (with swirl tape) are listed in Table 2.  The critical heat flux is 38 MW/m² 

calculated using modified Tong 75 correlation according to the CEA formulation, and it is not 

reached in the simulation. 

Table. 2. Selected values of heat transfer coefficient calculated for the current cooling condition.  

 100 °C 150 °C 200 °C 250 °C 295 °C 

heat transfer coefficient 

(kW/m²·K) 
109.1 115.92 121.01 128.75 208.24 

 

In stress analysis, kinematic constraint was applied to the end sections of the tube to suppress the 

axial displacement. As the fracture-mechanical analysis made in this study was deterministic in 

nature, two most potential cracking sites were predefined and the crack tip load was computed in 

an incremental manner for increasing crack length.  

3. Results and discussion 

3.1. Thermal response  

Fig. 4 shows the calculated temperature field in the divertor target under stationary HHF load of 

20 MW/m². Steep temperature gradient is built in the upper part of the tungsten block, which is a 

characteristic feature of the HHF loading of water-cooled targets. In Table 3, the temperature 

ranges on the armor surface during steady state loading are summarized for three different HHF 

loads. It is seen that the armor surface is heated up well above the recrystallization temperature 

of tungsten (roughly 1300 °C [15]) under both 15 and 20 MW/m² while the peak temperature 

under 10 MW/m² is far below 1300 °C.  
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Fig. 4. Temperature field in the divertor target under stationary HHF load of 20 MW/m². 

Table. 3. Calculated temperature range on the armor surface during steady state HHF loading.  

Heat flux loads Temperature ranges 

10 MW/m² 950-1058 °C 

15 MW/m² 1411-1612 °C  

20 MW/m² 1864-2146 °C  

 

After a large number of HHF load cycles, the total duration of the repeated thermal loading may 

provide the material enough time to recrystallize in the upper part of the armor block where the 

local temperature is higher than the 1300 °C. Assuming a sufficiently long time of cumulative 

thermal exposure, the depth of recrystallized part can be obtained by simply reading the distance 

from the surface to the position where the local temperature is 1300 °C. The result is given in 

Table 4. Obviously, the estimated depth is quite different between the edge and middle positions. 

This result fits the experimental observation well [3].   

The temperature field in the target, thus the recrystallized depth, sensitively depends on the 

thickness of tungsten armor between the surface and the tube. For instance, when the armor 

thickness is reduced to 5 mm, then recrystallization would not take place under 15 MW/m² (max. 

temperature reaches only 1220 °C) [16].  

For simplicity, in the simulations a 4 mm recrystallized layer was assumed for 20 MW/m2 and a 

2 mm recrystallized layer for 15 MW/m2. No recrystallized layer is assumed for 10 MW/m2. 
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Table. 4. Estimated depth of recrystallized part in the tungsten armor block. Sufficiently long 

time of cumulative thermal exposure was assumed.  

 Edge line  Middle axis 

10 MW/m² 0 mm 0 mm 

15 MW/m² 2 mm 0.5 

20 MW/m² 4.5 mm 2.5 mm 

3.2. Crack initiation by low cycle fatigue  

When tungsten is recrystallized, the yield stress decreases significantly as indicated in Table 1. 

For the same applied stress, recrystallized tungsten undergoes much larger plastic deformation 

than cold-rolled or stress-relieved one, provided the loading temperature is higher than the DBT 

temperature. Thus, recrystallized tungsten has higher risk to suffer from plastic LCF than the 

cold-worked one, since larger amount of plastic strains will be produced and accumulated due to 

low yield stress.  

Fig. 5 shows the plastic strain field in the tungsten armor block after the 5th HHF load cycle at 20 

MW/m². Plotted is the accumulated equivalent plastic strain which is a scalar-valued measure of 

plastic work incurred in a multi-axial strain state. It is found that the accumulated plastic strain is 

concentrated exclusively in the near-surface region of the tungsten armor while the rest part of 

the block remains only elastic. The strongest concentration appears in the middle region of the 

armor surface, where the maximum value amounts to 0.036 (3.6 %) after the 5th HHF load cycle.  

 
Fig. 5. Accumulated equivalent plastic strain field in the tungsten armor block after the 5th HHF 

load cycle at 20 MW/m2. Only the tungsten armor block is shown.  
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Plastic LCF failure is dictated by the magnitude of strain amplitudes, which is indicated by the 

increment of accumulated equivalent plastic strains during stabilized cyclic loading.  

Fig. 6 shows the evolution of accumulated equivalent plastic strain at the location of peak plastic 

strain (i.e. the middle position on the armor surface). The plastic strains are plotted over the first 

five HHF load cycles for two different HHF loads (i.e. 15 and 20 MW/m²). The loading at 10 

MW/m² produced no plastic strain. The strain increments seem to be saturated after 5 HHF load 

cycles in all cases. The graph shows that the tungsten surface experiences much severer plastic 

deformation and larger plastic strain increments under 20 MW/m² than 15 MW/m². It is also 

found that the low yield stress due to recrystallization has a significant impact on the plastic 

straining of the tungsten armor surface. The total accumulated plastic strain of the recrystallized 

surface layer is four times greater than that of stress-relieved tungsten armor.  

 

 
Fig. 6. Accumulated equivalent plastic strain at the reference node as a function of time for 

different HHF loads.  

 

Now, LCF lifetime can be assessed using the computed strain increment and experimental LCF 

data. Little data is available on the LCF behavior of tungsten. In Fig. 7, the LCF curves of two 

different tungsten grades (stress-relived and annealed) are plotted where the data were fitted to 

the Manson-Coffin relation [12]. The LCF lifetime of stress-relieved tungsten is much greater at 

815 °C than that at room temperature. This may be attributed to the brittleness of tungsten at RT 

(DBT temperature lies around 600-800 °C). It is also seen that annealed (recrystallized) tungsten 

has higher LCF lifetime than stress-relieved one at 815 °C below 104 cycles.  

Fatigue life is usually estimated by substituting the amplitude of plastic strain in uniaxial stress 

state (half of the increment of accumulated equivalent plastic strain in multi-axial strain states) 
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into the empirical Manson-Coffin equation obtained for given test temperature. In the context of 

present study, the LCF life should be interpreted as the number of cycles to crack initiation.  

 

 
Fig. 7. Experimental LCF data of two different tungsten grades (stress-relieved and annealed) 

fitted by the Manson Coffin relation [12]. 

 

The loading temperature is assumed to be same as the test temperature at which the LCF life 

data are measured. In the present study, however, the situation is different: the evolution of 

plastic strain takes place during transient temperature development. Thus, it is by no means a 

trivial question how to compare the computed strain amplitude with a specific LCF data 

measured by isothermal test condition.  

This issue is clearly illustrated in Fig. 8 where the temperature fluctuation and the evolution of 

accumulated equivalent plastic strain are plotted together over the common time scale of a HHF 

pulse at 20 MW/m² (5th HHF load cycle, at the reference position).  

It is found that the plastic strain is produced only during the transient stages of the thermal cycle, 

both in heating and cooling phases. Considering that the DBT temperature substantially affects 

the ductility, and thus the LCF behavior of a metal, we divided the total plastic strain amplitude 

into two components, namely, strain increment being produced above and below 800 °C, 

respectively. The contribution of each part to the final LCF life can be taken into account by 

means of Miner’s rule, which writes:  
1
𝑁

= 1
𝑁𝑙𝑙𝑙

+ 1
𝑁ℎ𝑖𝑖ℎ

  (1) 

where Nlow and Nhigh are the numbers of cycles to failure due to the plastic strain amplitude each 

produced below and above 800 °C, respectively. The contribution of each strain increment to the 
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LCF lifetime is then estimated by using different LCF data obtained at approximately similar test 

temperatures.  

 

 
Fig. 8. Evolution of surface temperature and the maximum accumulated equivalent plastic 

strain over the common time scale of HHF pulse at 20 MW/m2 (5th HHF load cycle).  

 

Table 4 shows the predicted minimum LCF lifetime of the tungsten armor surface together with 

the estimated equivalent plastic strain range (%). If there is a 4 mm thick recrystallized layer 

below the surface, roughly 20 % of the total plastic strain is predicted to be produced below 

800 °C under the HHF load of 20 MW/m² while the rest is produced above 800 °C. If there is no 

recrystallization, plastic strain is produced only above 800 °C.  

Table 4. Equivalent plastic strain range (%) and the predicted LCF lifetime (number of cycles to 

crack initiation) assessed for the tungsten armor surface.  

 20 MW/m² with 4 mm 

recrystallized layer 

20 MW/m² without 

recrystallized layer 

15 MW/m² with 2 

mm recrystallized 

layer 

Equivalent plastic 

strain range 

 

Generated below 

800°C 

0.065 0 0.036 
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Generated above 

800°C 

0.260 0.087 0.058 

Nlow
1 87 No failure 618 

Nhigh
2 4.8×104 4.5×106 2.5×106 

Nhigh
3 4.0×104 4.2×105 1.0×106 

N 86 4.2×105 617 
 

1 estimating with the plastic strain range generated below 800°C based on LCF data of stress-relieved tungsten at 20°C. 
2 estimating with the plastic strain range generated above 800°C based on LCF data of annealed tungsten at 815°C. 
3  estimating with the plastic strain range generated above 800°C based on LCF data of stress-relieved tungsten at 815°C. 
 

The results of the LCF estimation can be summarized as follows:  

1. The tungsten armor ‘without’ recrystallized layer would experience no cracking by LCF 

even at 20 MW/m² owing to its high yield stress (thus small plastic strain).  

2. The tungsten armor ‘with’ recrystallized layer is subjected to cracking by LCF under 

HHF loads of 15-20 MW/m² owing to its low yield stress (thus large plastic strain).  

3. The main cause of cracking by LCF is the plastic strain increment during cooling at 

lower temperatures below the DBT temperature where tungsten becomes brittle. This 

means that the cooling stage alone determines the cracking behavior.  

4. The number of load cycles to cracking estimated for the recrystallized tungsten armor 

surface is 86 for 20 MW/m² and 617 for 15 MW/m².  

The large residual stress generated by the plastic yield during HHF loading can possibly trigger 

the brittle cracking of tungsten armor as well [17].  

3.3. Crack growth by thermal stress  

In the previous section it was shown that cracks can be initiated on the tungsten armor surface as 

a result of LCF damage. In this section, attention is shifted from initiation to the growth of a 

created crack during a HHF load cycle. Two conditions have to be met for a crack to grow in the 
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presence of thermal stress fields: first, a crack is loaded by tensile stress in crack opening mode 

(tearing or sliding mode is not possible to occur in a single material) and second, the crack tip 

load is greater than the material’s resistance against crack extension. The second criterion can be 

expressed in terms of either stress intensity factor vs. fracture toughness or strain energy release 

rate vs. fracture energy. A scalar-valued quantity, J-integral, is a measure of strain energy release 

rate of a crack in nonlinear elastic (or brittle plastic) materials. In the followings, the two 

conditions are examined for the given HHF loading cases in a quantitative way.  

 

Fig. 9 shows the thermal stress fields (Cartesian normal component in the x direction) produced 

in the tungsten armor block at 5th HHF load cycle at 20 MW/m2. Plotted are the stress states in 

the stationary thermal loading stage and in the stationary cooling phase, respectively. It is seen 

that the tensile stress regions are situated at different locations: during HHF heating tensile stress 

appears in the vicinity of the tube whereas it occurs near the surface during cooling. Such strong 

tensile stress can cause crack initiation even without LCF damage, if there is a microscopic flaw 

where applied stress is concentrated. Hence, crack initiation at both locations of the tensile stress 

regions is regarded highly probable. In this sense, the two crack positions were considered for 

the fracture mechanics study here, as illustrated in Fig. 10. J -integral around the assumed crack 

tips was calculated to assess the driving force of crack growth. The criterion for crack growth is 

met when the J –integral value exceeds the critical fracture energy for the given temperature. 

The tensile stress fields indicate that the initiated cracks will extend in vertical direction. The 

length of the pre-cracks was assumed to be 0.5 mm long.  
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Fig. 9. Thermal stress fields (normal component x direction) in the tungsten armor block at 5th 

HHF load cycle at 20 MW/m2  during heating (left) and during cooling (right). The tube and the 

interlayer are not shown.  

 

  
Fig. 10. Locations of crack considered for the fracture mechanics analysis. The length of the pre-

cracks was assumed to be 0.5 mm long.  

 

Fig. 11 presents the J-integral values calculated for the surface crack (crack 1) as a function of 

crack length. Two different sets of J-integral values are presented, each calculated either at the 

free surface edge or at the 1st symmetry plane (see Fig. 1), respectively. For comparison, the 

literature data [18] of critical fracture energy measured at 400 °C is also plotted as dotted line. 

The J-integral data are compared between two stages of a HHF load cycle: stationary heating (a) 

and stationary cooling (b). The crack tip loading behavior of the ‘surface crack’ can be 

summarized as follows:  

1. Once a crack is initiated on the armor surface by any cause (particularly, middle region), 

it definitely grows, because the crack tip load is much higher than the toughness.  

2. In the initial stage of cracking, the crack grows during the cooling phase only. The tensile 
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stress developing upon cooling allows the crack to grow downwards up to 4.5 mm deep. 

The HHF heating stage has no influence on the small crack (< 5.5 mm) 

3. If the crack happens to grow more than 5.5 mm deep (e.g. by fatigue crack growth), then 

it can grow further during HHF heating until it reaches the interlayer. The cooling stage 

has no influence on the large crack (> 5 mm).  

4. Crack tip is loaded more strongly at the 1st plane of symmetry of the armor than at the 

free surface. Thus, the crack tip front would be formed into an elliptic contour.  

 

 

 
(a) Calculated at end of heating                  (b) Calculated at end of cooling 

 

Fig. 11. J-integral values calculated for the surface crack (crack 1) as a function of crack length. 

Two different sets of J-integral values are presented, each calculated either at the free surface 

edge or at 1st plane of symmetry, respectively. For comparison, the measured data of critical 

fracture energy is also plotted as dotted line.  

 

Fig. 12 shows the J-integral values calculated for the crack near the tube (crack 2) as a function 

of crack length. As the crack experiences only compressive stress during the cooling phase, only 

the J-integrals during the stationary HHF heating are presented. The trend of fracture behavior 

can be summarized as follows:  

1. Once a crack is created by strong tensile stress in the tungsten block adjacent to the tube, 

it definitely grows, because the crack tip load is much higher than the toughness.  

2. In the initial stage of cracking, the crack grows during the HHF heating phase only. The 

tensile stress developing upon heating allows the crack to grow upwards up to 2.5-3.5 
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mm deep. The cooling stage has no influence on the small crack.  

3. The crack growth ceases, when the crack length reaches roughly 3.5 mm. The region of 

tensile stress is situated too far from the crack front to have any influence.  

Similar results were already obtained in the previous study of the authors [6].  

 
Fig. 12. J -integrals for crack 2 as a function of crack length. The HHF load is 20 MW/m2 , and a 

4 mm recrystallized layer is assumed. The critical value of the J -integral of stress-relieved 

tungsten at 400 ◦ C is plotted as a reference. 

 

It is noted that the literature data of fracture energy considered in Figs. 11 and 12 were measured 

for stress-relieved tungsten at 400 °C. Since recrystallized tungsten should have lower fracture 

energy than this value, the prediction of crack growth behavior discussed above may be rather 

conservative estimates.  

 

Fig. 13 shows the maximum J-integral values calculated for the two cracks (crack 1 and crack 2) 

with a length of 1 mm as a function of HHF loads. The cracks were assumed to locate at the 1st 

plane of symmetry. J-integrals of crack 1 were calculated for the cooling stage, while those of 

crack 2 for the HHF heating stage.  

The trend shows that: 

1. The crack initiated on the surface can definitely begin to grow when the applied HHF 

load is not lower than 15 MW/m².  

2. The crack initiated near the tube can definitely begin to grow when the applied HHF load 

is higher than 10 MW/m².  

It is reminded that the present conclusions derived from the fracture mechanics analyses assume 
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the presence of a pre-crack without asking how it has been created. Thus, the correspondence of 

the predictions made by fracture mechanics analysis with the experimental findings should be 

evaluated together with the predictions of crack initiation behavior.  

 

 
Fig. 13. Maximum J-integral values calculated for the two cracks (crack 1 and crack 2) with a 

length of 1 mm as a function of HHF loads. The cracks were assumed to locate at the 1st  plane 

of symmetry.  

4. Summary and conclusions  

The HHF qualification tests conducted on the ITER divertor target prototypes showed that the 

tungsten monoblock armor suffered from deep cracking due to fatigue, when the applied HHF 

load approaches 20 MW/m². In this paper, a rigorous theoretical interpretation of the observed 

cracking features was presented by means of finite element analysis.  

Two-track computational approach was employed: 1) to simulate the plastic fatigue of the armor 

surface for assessing the lifetime to crack initiation and 2) to compute the crack tip load for 

estimating the driving force of crack growth. The quantitative predictions delivered in this study 

agreed well with the observed findings offering insight into the mechanisms of deep cracking.  

Cracks can be initiated on the surface of tungsten armor, if the applied HHF load is about 15 

MW/m² or higher under which the tungsten armor begins to be partially recrystallized from the 

surface layer.  The major features predicted by the current study at 20 MW/m²  are as follows:  

1. Temperature distribution indicates that recrystallization occurs in the upper part of the 

tungsten armor. 
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2. The most probably cause of cracking is LCF damage followed by crack formation due to 

tensile stress developing in the surface region during cooling stage.  

3. LCF damage is promoted by the low yield stress of recrystallized tungsten during HHF 

heating.  

4. Crack initiation is substantially favored in the recrystallized tungsten armor owing to the 

increased brittleness. Recrystallized tungsten has a much lower LCF life compared to 

cold-worked tungsten.  

5. Once a crack is created on the armor surface, it can grow during the cooling stage where 

strong tensile stress develops in the upper part of the armor. The crack growth during 

cooling is predicted to cease at the depth of about 5 mm.  

6. Crack growth can be continued during the HHF heating stage where strong tensile stress 

develops in upper interfacial region of the tungsten armor block adjacent to the top 

position of the copper interlayer. 

7. Crack growth is triggered by strong crack tip opening loads over the whole thickness of 

the armor except the depth band between 4.5-5.5 mm. Hence, the observed deep cracking 

should be rather a rule than exception.  
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