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Abstract

A new algorithm for electromagnetic gyrokinetic simulations, the so called “pullback transforma-

tion scheme” proposed by Mishchenko et al. [Physics of Plasmas, 21, 092110 (2014)] is motivated

as an elaborated explicit time integrator and investigated in detail. Using a numerical dispersion

relation valid in slab geometry, it is shown that the linear properties of the scheme are comparable

to those of an implicit v‖-scheme. A nonlinear extension of the mixed variable formulation, derived

consistently from a field Lagrangian, is proposed. The scheme shows excellent numerical properties

with a low statistical noise level and a large time step especially for MHD modes. The example of a

nonlinear slab tearing mode simulation is used to illustrate the properties of different formulations

of the physical model equations.
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I. INTRODUCTION

Simulating the electromagnetic gyrokinetic equation using particle-in-cell methods is an

ongoing challenge. While significant noise reduction was achieved with the introduction

of the δf -splitting, which is equivalent to a control variate method [1], electromagnetic

simulations including the perturbed parallel vector potential A‖ still proved difficult. Early

attempts to use the particle velocity v‖ as variable (v‖-scheme) had severe problems [2]

because the partial time derivative of A‖ in the equations of motion made their numerical

treatment difficult. After Hahm [3] proposed the canonical momentum (p‖ = msv‖ + qsA‖,

with ms, qs the species mass and charge) as variable, simulations were still possible only

for very small values of the plasma-β or if the grid size was smaller than the collisionless

skin depth [4]. In this p‖-formulation the term ∂A‖/∂t is not present in the equations of

motion but Ampère’s law gained an additional, so called “skin”, term: a consequence of

the first moment of the distribution function with respect to p‖ resulting in a non-physical

current. Instead, the current obtained using p‖ contains an adiabatic part that exactly

cancels the skin term. In many applications this “artificial” skin term exceeds the physical

term; especially for large scale electromagnetic modes (as e.g. toroidal Alfvén eigenmodes).

Moreover, in particle simulations the current is represented by particles while the skin term

(being part of the differential operator acting on A‖) is represented by quantities on a grid.

This makes the cancellation incomplete thus leaving a statistical residual contaminating the

physical solution; the origin of the notorious cancellation problem (see e.g. [5]).

It was shown in [6] exemplarily for a slab geometry that the cancellation problem could

be mitigated by a proper re-normalisation of the coefficients in Ampère’s law in order to

match the numerical coverage of velocity space by particles. Later, significant improvement

was achieved by the introduction of an adjustable control variate (ACV) scheme [7], i.e. an

iterative procedure to obtain a control variate for the adiabatic current. This method made

electromagnetic simulations in tokamaks and stellarators practical. Nonetheless, for simu-

lations in certain parameter regimes the necessary time step could become very restrictive.

Also the scheme is very sensitive to small inconsistencies in a simulation code; these need

to be eliminated.

An alternative to the ACV was developed in [8] where a new set of variables, so called

“mixed variables”, was proposed and successfully applied to gyrokinetic simulations of MHD
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modes. This approach was further extended in the “pullback transformation scheme” (PT-

scheme) to also apply to non-MHD modes [9] and showed good performance for different

configurations and parameter regimes [10]. Nevertheless, some issues regarding this scheme

remained and will be investigated here. Also the original scheme was linearised; so we will

derive a nonlinear version of the scheme based on a field theoretical Lagrangian formulation.

The paper is organised as follows: First we give a pedagogical derivation as well as an

interpretation of the pullback transformation scheme as a resetting algorithm. In Section

III we derive its numerical dispersion relation for slab geometry and compare it with the

one resulting from an implicit v‖-scheme. In Section IV, we show that the mixed variable

formulation can also be derived using a field Lagrangian. Finally, we show simulation results

for three simple cases to illustrate the behaviour of the scheme.

II. THE PULLBACK TRANSFORMATION SCHEME

We derive the mixed variable formulation starting from a phase-space particle Lagrangian

formulated in v‖ and assuming the field equations as given (a derivation using a field La-

grangian ensuring the consistency of the equations and the existence of conservation laws

will be presented in Section IV). The result will then be used to construct the PT-scheme.

The equation to be solved for each species s (ions and electrons) is the gyrokinetic equa-

tion for the distribution function fs in (~R, v‖, µ, α)-space (note that µ is the specific magnetic

moment, µ = v2⊥/(2B))

dfs
dt

=
∂fs
∂t

+ ~̇R·∇fs + v̇‖
∂fs
∂v‖

+ µ̇
∂fs
∂µ

= 0. (1)

The equations of motion are defined via the phase-space particle Lagrangian (see

e.g. Ref. [11])

Lv‖ = qs

[

~A0 +

(

ms

qs
v‖ + 〈A‖〉

)

~b

]

· ~̇R +
m2

s

qs
µα̇−Hv‖ (2)

Hv‖ =
ms

2
v2‖ +msµB + qs〈Φ〉. (3)

Here ~A0,~b and B are the fixed background’s vector potential, unit vector and strength of

magnetic field, while A‖ describes the perturbation of the parallel vector potential. The

gyro-average is indicated by angular brackets.

The field equation for the electrostatic potential perturbation Φ follows, as usual, from

quasineutrality. Neglecting the polarisation term for the electrons, linearising the remaining
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polarisation term of the ions and using a long wavelength approximation gives

−∇ ·
(min0

B2
∇⊥Φ

)

=
∑

s

qs〈ns〉, (4)

where n0 is the background density, ns the species density and the summation index s runs

over all species. Ampère’s law is given by

−∇·∇⊥(A0,‖ + A‖) = µ0

∑

s

〈j‖,s〉 (5)

with the total current j‖,s and A0,‖ = ~b· ~A0.

We now proceed by decomposing A‖ arbitrarily into a symplectic and Hamiltonian part

A‖ = As
‖ + Ah

‖ thereby earning an additional degree of freedom, which will be fixed later.

After transforming to the new variable u‖ = v‖ +
qs
ms

〈Ah
‖〉 one arrives at

Lmixed = qs ~A
∗ · ~̇R +

m2
s

qs
µα̇−Hmixed (6)

Hmixed =
ms

2
u2
‖ +msµB + qs(〈Φ〉 − u‖〈Ah

‖〉) +
q2s
2ms

〈Ah
‖〉2 (7)

with

~A∗ = ~A0 +

(

ms

qs
u‖ + 〈As

‖〉
)

~b. (8)

Apart from the quadratic Ah
‖ term this Lagrangian is identical to the one in Ref. [9]. Contrary

to the p‖-formulation, where p‖ contains A‖, in the mixed formulation only the Hamiltonian

part Ah
‖ is absorbed into the new variable u‖. The equations of motion (and µ̇ = 0) then

directly follow from Lmixed as

~̇R =
1

ms

~B∗

B∗
‖

∂H

∂u‖

+
1

qsB
∗
‖

~b×∇H (9)

u̇‖ = − 1

ms

~B∗

B∗
‖

·∇H − qs
ms

∂〈As
‖〉

∂t
(10)

with ~B∗ = ∇× ~A∗ and B∗
‖ = ~b· ~B∗. From these equations phase-space conservation

∂B∗
‖

∂t
+∇·(B∗

‖
~̇R) +

∂(B∗
‖ u̇‖)

∂u‖
= 0 (11)

follows directly.

While the potential equation (4) remains unchanged, Ampère’s equation needs to be

transformed into the mixed formulation giving (with the usual simplification of neglecting
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the double gyro-average of Ah
‖)

−∇·∇⊥A
h
‖ + Ah

‖

∑

s

µ0n0q
2
s

ms

= µ0

∑

s

〈δj‖,s〉+∇·∇⊥A
s
‖. (12)

Here fs has been split into an equilibrium part plus a perturbation, the equilibrium contri-

butions have been cancelled and the nonlinear skin term has been linearised (i.e. n has been

replaced by n0). Since the perturbed current δj‖,s is now defined as a u‖ moment, the skin

term only involves Ah
‖. Here, Eq. (12) is regarded as a field equation for Ah

‖ and the As
‖ term

has been moved to the right-hand side becoming a source term.

It is useful to write out Eqs. (9, 10) for a simple slab geometry, i.e. neglecting the variation

of the background magnetic field:

~̇R =

(

u‖ −
qs
ms

〈Ah
‖〉
)

~b+
1

B∗
‖

~b×∇
[

〈Φ〉 − u‖

(

〈As
‖〉+ 〈Ah

‖〉
)

+
qs
2ms

〈Ah
‖〉2
]

+
qs

msB∗
‖

〈Ah
‖〉~b×∇〈As

‖〉 (13)

u̇‖ = − qs
ms

{

~b·∇
[

〈Φ〉 − u‖〈Ah
‖〉+

qs
2ms

〈Ah
‖〉2
]

+
∂〈As

‖〉
∂t

+

+
1

B∗
‖

∇〈As
‖〉·~b×∇

[

〈Φ〉 − u‖〈Ah
‖〉+

qs
2ms

〈Ah
‖〉2
]}

. (14)

Note that these equations reduce to the v‖ or p‖ equations if Ah
‖, respectively As

‖, is set to

zero and the remaining field is renamed to A‖.

To arrive at an equation more suitable for a numerical treatment it would be advantageous

to, firstly eliminate the partial time derivative from Eq. (14) in order to be able to use

an explicit time discretisation scheme and, secondly, simplify the remaining equation by

removing the dominant term ~b·∇〈Φ〉 (as we will see later, with the pullback algorithm Ah
‖

is generally small). One expects the latter to allow for larger time steps in the numerical

integration.

The arbitrariness introduced by the splitting of A‖ now allows to remove the partial time

derivative by postulating a time evolution equation for As
‖ which is then used to simplify

Eq. (14). One is thus led to postulate

∂As
‖

∂t
+~b·∇Φ = 0 (15)

in order to close the system. Superficially this equation looks like the magneto-hydrodynamic

condition E‖ = 0 but, unlike the MHD case, here it does not tie A‖ and Φ together since
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Ah
‖ is still free to evolve. Thus, this postulated relation poses no restriction on the class of

possible modes described by the theory. Equation (15) can rather be written as

E‖ = −
∂Ah

‖

∂t
, (16)

showing that the parallel electric field is determined by Ah
‖. The simplified Eq. (14) then

becomes

u̇‖ =− qs
ms

{

~b·∇
[

−u‖〈Ah
‖〉+

qs
2ms

〈Ah
‖〉2
]

+

+
1

B∗
‖

∇〈As
‖〉·~b×∇

[

〈Φ〉 − u‖〈Ah
‖〉+

qs
2ms

〈Ah
‖〉2
]

+~b·∇〈Φ〉 − 〈~b·∇Φ〉
}

.

(17)

When the gyro-average can be neglected (as e.g. for electrons), the last two terms cancel.

For arriving at the final equations to be solved, i.e. Eqs. (13, 17) together with Eqs. (4, 12,

15), no numerical argument was involved; the whole procedure served only to remove the

time derivative of the parallel vector potential from the equations of motion.

A. Numerical properties of the pullback transformation scheme

We now turn to the question of how the above equations influence a potential numerical

algorithm. This is strongly connected to the fact that Ah
‖ should be kept as small as possible

which will be achieved by the so-called resetting procedure.

One immediately observes that, if one neglects the nonlinear terms in Eq. (17), for Ah
‖ = 0

this equation becomes trivial what should allow to use a larger time step in a numerical

integrator.

Another advantage of keeping Ah
‖ small can be seen by splitting fs into a time independent

part fs,0 and a time dependent part δfs according to fs = fs,0 + δfs (the usual δf -splitting

used in many PIC codes). The kinetic equation (1) then reads

dδfs
dt

= −dfs,0
dt

. (18)

After linearising this equation, keeping only the term proportional to ~b · ∇〈Ah
‖〉 in Eq. (17)

and neglecting space gradients in f0, it reads

dδfs
dt

=
∂δfs
∂t

+ u‖
~b·∇δfs = − qs

ms

u‖
~b · ∇〈Ah

‖〉
∂f0,s
∂u‖

(19)
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what can be written as

dδfs
dt

= − d

dt

(

qs
ms

〈Ah
‖〉
∂f0,s
∂u‖

)

+
qs
ms

E‖
∂f0,s
∂u‖

. (20)

Neglecting the E‖ term for the moment and integrating along a trajectory gives a change

in δf proportional to (qs/Ts)u‖〈Ah
‖〉f0,s (having assumed f0,s to be a Maxwellian with tem-

perature Ts) which is exactly the adiabatic part of δf . Consequently, by minimising Ah
‖ the

development of an adiabatic current, one ingredient of the cancellation problem, is miti-

gated, while the evolving parallel electric field provides the non-adiabatic part. Also when

the full equations of motion are taken into account, this mechanism is still at work, leading

to a benign numerical behaviour.

Finally, the beneficial influence of having a small Ah
‖ also follows from Ampère’s law:

Neglecting the ion contribution and working in Fourier space it reads in the p‖-formulation

(defining the electron gyro-radius and the plasma-β as ρe =
√
2kBTeme/(|qe|B) and β =

2µ0n0kBTe/B
2)

k2
⊥A‖ +

β

ρ2e
A‖ = µ0(δj‖,nonad + δj‖,ad). (21)

Here the current was separated into a non-adiabatic part δj‖,nonad = 1
µ0
k2
⊥A‖ and an adiabatic

part δj‖,ad = β

µ0ρ2e
A‖. If the latter is discretised using Np particles, it can be written as

δj‖,ad = δjad + ǫad, were the expected value δjad = β

µ0ρ2e
A‖ exactly cancels the skin term on

the left-hand side of Ampère’s law while the statistical error is left over. This is proportional

to the variance, which can be computed explicitly here using the background distribution

and thus is of the form ǫad = c β

µ0ρ2e
A‖, with c ∼ O(1/

√

Np). Neglecting the statistical error

of the non-adiabatic part,
ǫad

δj‖,nonad
∼ c

β

k2
⊥ρ

2
e

(22)

follows. This shows that, especially for small k⊥ and large β, the statistical error of the

adiabatic current can become large and swamp the physically more important non-adiabatic

part.

On the other hand, in the mixed formulation Ampère’s law

k2
⊥(A

h
‖ + As

‖) +
β

ρ2e
Ah

‖ = µ0(δj‖,nonad + δj‖,ad) (23)

gives (assuming Ah
‖ ≪ As

‖)

ǫad
δj‖,nonad

= c
β

k2
⊥ρ

2
e

Ah
‖

(Ah
‖ + As

‖)
∼ c

β

k2
⊥ρ

2
e

Ah
‖

As
‖

(24)
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because in this case δj‖,ad is proportional to Ah
‖ while still δj‖,nonad∼A‖≈As

‖ (the statistical

error of As
‖ has been assumed to be negligible since it is mainly determined by the quasi-

neutrality equation, which has no cancellation problem). Consequently, the ratio is reduced

by a factor of Ah
‖/A

s
‖ compared with Eq. (22). Note that the ratio of the two terms involving

Ah
‖ on the left-hand side of Eq. (23) still scales unfavourably with β/(k2

⊥ρ
2
e).

B. Resetting procedure

While integrating the system of equations in time, Ah
‖ evolves and becomes larger eventu-

ally, as we have seen in the last paragraphs, leading to a numerically unfavourable behaviour.

This growth of Ah
‖ can be prevented by using a resetting algorithm: After a certain number

of time steps (with a minimum of one) Ah
‖ is reset to zero. Thus, only between the resets

can Ah
‖ evolve and acquire a finite value. This value is determined by the size of the time

step: making the time step smaller can push Ah
‖ below every limit.

In order to see what this implies, it is useful to notice that v‖ and u‖ define two different

coordinate systems of the same configuration space, where the u‖ coordinate system con-

tinuously depends on Ah
‖ . At the initial time Ah

‖ being zero, the two coordinate systems

are identical, but then evolve away from each other as the equations above are integrated.

Setting Ah
‖ to zero has two consequences: u‖ must be transformed back to v‖ using the

transform

v‖ = u‖ −
qs
ms

〈Ah
‖〉 (25)

and fs must be pulled back with this coordinate transform. Since fs is a scalar quantity this

pullback transformation is simply given by

fs(v‖) = fs(u‖). (26)

When Ah
‖ is reset to zero it is necessary not to lose its contribution to A‖. Thus, before

the reset is done, the value of Ah
‖ must be added to As

‖, which then becomes equivalent to

A‖.

A simple graphical representation of the scheme just described is shown in Fig. 1, where

the x-axis represents the v‖ and u‖ coordinate systems with their origins identified. Here

it is assumed that the reset procedure is applied after each ∆t but the integration of the

equations of motion in the u‖-system was done with an arbitrarily small time step in order
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to be able to draw a continuous trajectory (solid line). A particle follows its trajectory in

the u‖-system for a time ∆t; then it is transformed back into the v‖-system (open circles)

and Ah
‖ is reset to zero. Then u‖ = v‖ and the trajectory in the u‖-system starts at this last

point for the next ∆t. So, in the v‖-system the PT-scheme only gives values at discrete time

points sampling the continuous trajectory (dashed line), which itself cannot be obtained. In

the u‖-system trajectories are discontinuous only because this system is shifting with respect

to the v‖-system and reset each ∆t.

In simulations a numerical integration scheme with time step ∆t must be used to solve the

coupled set of equations consisting of the equations of motion and the potential equations.

The above resetting procedure can then be applied after each ∆t so that all quantities are

given in v‖-space with the according magnetic potential As
‖ = A‖. Therefore, after finishing

the time step by performing the resetting procedure, we end up again in the v‖-system. This

means that the u‖-system is only used to efficiently integrate our set of equations. For the

physical interpretation of the results it has no relevance as the diagnostics of the simulation

only act on the distribution function fs(v‖) in the v‖-system. Thus, the scheme presented

here can be interpreted as a sophisticated time integrator of the gyrokinetic equation in the

v‖-formulation.

Being back to the v‖-system at the end of each time step may also simplify the imple-

mentation of collisions since the collision operator can keep its usual form as differential

operator in v‖. As another beneficial consequence of resetting Ah
‖ to zero, all terms involving

Ah
‖ vanish when continuing the integration of the equations of motion at the beginning of

the new time step.

C. Numerical implementation

In PIC algorithms the numerical particles, so-called markers, are distributed in phase-

space by the marker distribution function gs. In case of an importance sampling method

the gs can differ from the phase-space distribution function fs of the physical markers.

Nevertheless, the markers have to follow the trajectories of the physical particles and hence

they obey the same evolution equation, Eq. (1), as fs: dgs/dt = 0. Each marker with

index p carries a full-f weight given by the ratio cp = fs,p/gs,p along its trajectory, which

can be used to calculate e.g. the moments of the distribution function. As both, fs,p and
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gs,p, are conserved along the trajectory of the marker, also cp is conserved (full-f method).

Consequently, the cp do not change once they have been initialized at the beginning of

the simulation. This is true along all trajectories in the u‖-system. What is even more

important, cp stays constant when one transforms the velocity from u‖ to v‖ (Eq. (25))

as part of the pullback transformation Eq. (26). Thus, the markers follow the trajectory

sketched in Fig. 1 without changing their full-f weight which can be easily exploited in the

the so-called “direct δf -method” (see Ref. [12]) to obtain the noise reduced δf -weight wp:

wp =
δfs,p
gs,p

=
fs,p(t0)− fs,0

gs,p
= cp −

fs,0
gs,p

. (27)

The pullback transformation can also be formulated in a pure δf -setting: Using the δf -

splitting one obtains the pullback transformation, without any approximation, as

δfs(v‖) = δfs(u‖) + fs,0

(

v‖ +
qs
ms

〈Ah
‖〉
)

− fs,0(v‖). (28)

Accordingly, the noise reduced weights in the v‖-system can be calculated by wp =

δfs,p(v‖)/gs,p. For a linear simulation Eq. (28) needs to be linearised, resulting in

δfs(v‖) = δfs(u‖) +
qs
ms

∂fs,0
∂u‖

〈Ah
‖〉, (29)

which is identical to the transformation used in Ref. [9].

For completeness we give here the u‖-equations of motion to second order in general

geometry:

~̇R =

[

u‖ −
qs
ms

〈Ah
‖〉
]

~b+
1

B∗
‖

~b×∇
[

φ− u‖

(

〈Ah
‖〉+ 〈As

‖〉
)

+
qs
2ms

〈Ah
‖〉2
]

+

+
qs
ms

1

B∗
‖

〈Ah
‖〉~b×∇〈As

‖〉+
ms

qs

[

µB + u2
‖

BB∗
‖

~b×∇B +
u2
‖

BB∗
‖

(∇× ~B)⊥

]

+

+ ~b× κ

[

u‖

B∗
‖

(

〈As
‖〉 − 〈Ah

‖〉
)

− qs
ms

1

B∗
‖

〈Ah
‖〉〈As

‖〉
]

(30)
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u̇‖ = − qs
ms

{

∇‖

[

φ− u‖〈Ah
‖〉+

qs
2ms

〈Ah
‖〉2
]

+ ∂t〈As
‖〉+

+
1

B∗
‖

∇〈As
‖〉 · b×∇

[

φ− u‖〈Ah
‖〉+

qs
2ms

〈Ah
‖〉2
]}

+

− µ∇B ·
[

~b+
ms

qs

u‖

BB∗
‖

(∇× ~B)⊥

]

+

− u‖

B∗
‖

~b× κ·∇
(

φ− u‖〈Ah
‖〉
)

− µ

B∗
‖

[

~b×∇B ·∇〈As
‖〉+

1

B
∇B ·(∇×B)⊥〈As

‖〉
]

+

− qs
ms

1

B∗
‖

~b× κ·
[

〈As
‖〉∇

(

φ− u‖〈Ah
‖〉
)

+ 〈Ah
‖〉∇〈Ah

‖〉
(

u‖ +
qs
ms

〈As
‖〉
)]

(31)

with

~b× κ =
1

B

(

~b×∇B + (∇× ~B)⊥

)

(32)

B∗
‖ = B +

[

ms

qs
u‖ + 〈As

‖〉
]

~b·(∇×~b). (33)

Note that all high order terms have to be kept in a nonlinear simulation although they might

be small. If not, the proposed scheme may lose its conservation properties, like conservation

of phase space volume, energy or total canonical angular momentum.

In summary the pullback transformation scheme consists of three steps: integrating the

equations of motion (30), (31) together with the kinetic equation (1); solving the field

equations Eqs. (4), (12), (15); resetting, i.e. applying the pullback transformation (25), (26)

and, finally, performing the assignment As
‖ + Ah

‖ → As
‖ followed by Ah

‖ = 0.

III. NUMERICAL DISPERSION RELATION

In this section, a numerical dispersion relation (see e.g. [13]) taking into account the

discrete time integration by an Euler scheme for the v‖- and PT-scheme is derived (it would

also be possible to include the spatial discretisation, but this is not done here). In order not

to make this analysis too cumbersome a kinetic shear Alfvén wave in simple slab geometry

is taken as an example. So, we assume all equations to be linearised, written for a simple

one-dimensional geometry and all background quantities taken as constant. Furthermore, f0

is a centred Maxwellian with temperature T and density n; the background magnetic field

points into the z-direction; Φ, A‖, δf vary as ei(k⊥x+k‖z); electrons are the only dynamical

species (the ions provide the neutralising background) and the gyro-average is neglected.
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In the v‖-formulation one thus has (a superscript “(1)” indicates the perturbed part of

the trajectory)

ż = v‖ (34)

v̇‖ = 0 (35)

v̇
(1)
‖ = − qe

me

(

∂Φ

∂z
+

∂A‖

∂t

)

(36)

dδfe
dt

=
∂δfe
∂t

+ ż
∂δfe
∂z

= −v̇
(1)
‖

∂fe,0
∂v‖

(37)

min0

B2
k2
⊥Φ = qe

∫

δfe dv‖ (38)

k2
⊥A‖ = µ0qe

∫

v‖δfe dv‖. (39)

Assuming a time dependency e−iωt and normalising (denoted by a bar) k⊥ and ω to ρe

and k‖vth,e, the well known dispersion relation

Dexact = 1− 2β

k̄2
⊥

(

ω̄2 − µ̃

β

)

(1 + ω̄Z(ω̄)) = 0 (40)

follows (vth,e =
√

2Te/me being the electron thermal velocity and µ̃ the electron to ion mass

ratio).

A. Implicit v‖-scheme

Using an implicit Euler scheme with step-size ∆t, the time derivatives of e.g. A‖ (with

the above dependency on space and time) can be written as (a subscript n indicates the

value at time t = tn = n∆t)

∂A‖

∂t

∣

∣

∣

∣

n

≈ A‖,n − A‖,n−1

∆t
= −iΩ+A‖,n (41)

with

Ω± = ±i
1− e±iω∆t

∆t
. (42)

The equations of motions become simply zn = zn−1 + v‖,n−1∆t and v‖,n = const. = v‖, what

is used to calculate the total derivative of δfe along the trajectories

dδfe
dt

∣

∣

∣

∣

n

≈ δfe,n − δfe,n−1

∆t
= −iK+δfe,n (43)
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with

K± = ±i
1− e±i(ω−k‖v‖)∆t

∆t
. (44)

Computing the Fourier series of the 2π-periodic function whose value on [−π, π[ is

cos(ax)/ sin(aπ) for any a ∈ R\Z, and equating the Fourier series to the function at the

point x = 0 yields the following identity

π

sin(aπ)
=

+∞
∑

n=−∞

(−1)n

n+ a
. (45)

Using this, a straightforward calculation yields the following expression for K−1
± :

K−1
± = −

∞
∑

l=−∞

e±
i

2
(k‖v‖−ω+ 2πl

∆t
)∆t

k‖v‖ − ω + 2πl
∆t

. (46)

Evaluating the right-hand side of Eq. (37) and combining with Eq. (43) gives

δfe,n =
qe
me

K−1
+ (k‖Φn − Ω+A‖,n)

∂fe,0
∂v‖

. (47)

Putting Eqs. (46, 47) into the field equations leads to the numerical dispersion relation

for the v‖-scheme (with Ω± and 1/∆t normalised to k‖vth,e)

Dv‖ = 1− 2β

k̄2
⊥

∞
∑

l=−∞

(

Ω̄+F1,l −
µ̃

β
F0,l

)

= 0. (48)

The integrals F0,l and F1,l defined by

Fm,l = −
k‖v

2−m
th,e

2n

∫ ∞

−∞

e
i

2
(k‖v‖−ω+ 2πl

∆t
)∆t

k‖v‖ − ω + 2πl
∆t

∂f0
∂v‖

vm‖ dv‖ (49)

can be evaluated to

F0,l = e−y2+2ixy [1 + xZ(x+ iy)] (50)

F1,l = e−y2+2ixy
[

x2Z(x+ iy) + x− iy
]

(51)

with x = ω̄ − 2πl/∆t̄ and y = −∆t̄/4 (with t̄ = tk‖vth,e). For ∆t̄ → 0, which entails l = 0,

Eq. (48) converges to Eq. (40).
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B. Pullback transformation scheme

The equations to be solved in this scheme are

ż = u‖ (52)

u̇‖ = 0 (53)

u̇
(1)
‖ = − qe

me
u‖

∂Ah
‖

∂z
(54)

dδfe
dt

= −u̇
(1)
‖

∂fe,0
∂u‖

(55)

with the field equations

∂As
‖

∂t
= −∂Φ

∂z
(56)

(

k2
⊥ +

µ0n0q
2
e

me

)

Ah
‖ = µ0qe

∫

u‖δfe du‖ − k2
⊥A

s
‖ (57)

min0

B2
k2
⊥Φ = qe

∫

δf du‖. (58)

The pullback transformation has to be applied after the end of each time step, i.e. quantities

at time tn have to be transformed (denoted by an asterisk) according to

δf ∗
e = δfe +

qe
me

∂fe,0
∂u‖

Ah
‖ (59)

As∗
‖ = As

‖ + Ah
‖ (60)

Ah∗
‖ = 0. (61)

As a consequence, when discretising the time derivatives in Eqs. (55, 56) the transformed

quantities at time step n have to be used, e.g.

∂As
‖

∂t

∣

∣

∣

∣

n

≈
As

‖,n+1 −As∗
‖,n

∆t
. (62)

For this scheme all equations involving time derivatives will be discretised explicitly.

Due to Eq. (61) the right-hand side of Eq. (55) becomes zero, leading to

δfe,n =
i

∆tK−

qe
me

Ah
‖,n

∂fe,0
∂u‖

, (63)

while from Eq. (56) using Eq. (60)

As
‖,n =

i

∆tΩ−
(Ah

‖,n − ik‖Φn∆t) (64)
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follows. From Eq. (64) together with the fact that Ah
‖ is reset to zero after each time step

follows the important result Ah
‖ ∼ ∆t. Putting everything together leads finally to the

numerical dispersion relation for the PT-scheme

DPT = 1− iΩ̄−∆t

(

1 +
β

k̄⊥

)

− 2β

k̄2
⊥

∞
∑

l=−∞

(

Ω̄−F1,l −
µ̃

β
F0,l

)

= 0 (65)

where F0,l, F1,l now must be evaluated using y = ∆t̄/4.

C. Results of the dispersion relation

Figure 2 shows the real and imaginary part of ω̄ obtained from the three dispersion

relations as a function of β.

In the case with small k̄⊥ (left-hand side of Figure 2) the time step of ∆t̄ = 10−6 is

sufficiently small for the numerical schemes to give the same real part as the exact solution.

In fact the frequency is very robust with respect to changes in time step: For the relative

frequency error to stay below ≈ 1% (at β = 0.1) the time step needs only to be smaller than

approximately 10−2. However, the (very small) damping rate is not as well approximated

as the frequency: the numerical dispersion relations show an artificial damping about 70%

higher than the exact one for β = 0.1. Decreasing ∆t̄ by a factor of ten decreases the artificial

damping by roughly the same factor. In total, the numerical schemes consistently give a

lower imaginary part than the exact solution, showing that they are always numerically

stable.

In the large k̄⊥ case (right-hand side of Figure 2), where the exact solution is strongly

damped (note the different y-axis scaling of the lower left and right plot), a relatively large

time step of ∆t̄ = 1 has been chosen in order to highlight the behaviour of the imaginary

part (here, the relative error of the frequency and damping rate is of the same order): The

numerical schemes show artificial damping for β > 0.05 and act somewhat destabilising for

lower β but, due to the strong intrinsic physical damping, this does not lead to numerical

instability.

It is also possible to use an explicit discretisation for the v‖-scheme but we found this

leading to strong numerical instabilities when β was not small enough.

Nevertheless, the most important observation is that the v‖- and the PT-scheme give

nearly the same results for both sets of parameters (with the latter scheme having slightly
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less numerical damping). Thus, at least for this simple case, the two schemes are equivalent

but the PT-scheme has the advantage of being explicit.

IV. FIELD THEORETICAL FORMULATION

Following e.g. Ref. [14], [15], as modern gyrokinetic theory is derived so as to conserve

some structure of the underlying Vlasov-Maxwell equations, it is desirable with respect to

consistency and in order to exactly conserve the main physical invariants, to derive the

gyrokinetic equation from a variational principle δS = 0 where S =
∫

L dt is the action of

a Lagrangian L. Starting from Eqs. (2, 3) and performing the coordinate transformation

p‖ = msv‖ + qsA‖ gives the p‖ particle Lagrangian

Lp‖ = qs

(

~A0 +
1

qs
p‖~b

)

· ~̇R +
m2

s

qs
µα̇−Hp‖ (66)

Hp‖ =
p2‖
2ms

+msµB + qs

(

〈Φ〉 − p‖
ms

〈A‖〉
)

+
q2s
2ms

〈A‖〉2. (67)

From this we motivate the p‖ field-Lagrangian (the polarisation term has been linearised

using the equilibrium distribution function f0,s)

Lp‖ =
∑

s

{
∫

fs

[

qs

(

~A0 +
1

qs
p‖~b

)

· ~̇R +
m2

s

qs
µα̇−

p2‖
2ms

−msµB − qs

(

〈Φ〉 − p‖
ms

〈A‖〉
)

+

− q2s
2ms

〈A‖〉2
]

dW0 dV0 +

∫

f0,s
ms

2B2
(∇⊥Φ)

2dW dV

}

− 1

2µ0

∫

(∇⊥A‖)
2 dV

(68)

where dW0 and dV0 are the velocity and position space volume element (a subscript “0”

indicates that the integration has to be done with respect to the initial phase-space positions

of the trajectories [14]).

After introducing into Eq. (68) the splitting A‖ = As
‖ + Ah

‖ and the new variable u‖ =

p‖ − qs
ms

〈As
‖〉, a Lagrange multiplier λ is finally used to incorporate

∂As

‖

∂t
+~b·∇Φ = 0 giving

Lmixed =
∑

s

{
∫

fs

[

qs ~A
∗ · ~̇R +

m2
s

qs
µα̇− ms

2
u2
‖ − µB − qs

(

〈Φ〉 − u‖〈Ah
‖〉
)

+

− q2s
2ms

〈Ah
‖〉2
]

dW0 dV0 +

∫

f0,s
ms

2B2
(∇⊥Φ)

2dW dV

}

− 1

2µ0

∫

(∇⊥A‖)
2 dV+

+

∫

λ

(

∂As
‖

∂t
+~b·∇Φ

)

dV

(69)
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with

~A∗ = ~A0 +

(

ms

qs
u‖ + 〈As

‖〉
)

~b. (70)

Variation with respect to particle positions, by construction, recovers Eqs. (6, 7). Per-

forming the variation with respect to Φ, Ah
‖ , A

s
‖ and λ gives (using the relation ~b· ~̇R = 1

m
∂H
∂u‖

following from Eq. (9)) the field equations.

One needs to be careful here with the gyro-averaging operator: Since it is not self-adjoint

(it can be written as an integral operator with non-symmetric kernel), it is necessary to

introduce its adjoint denoted by 〈·〉† as
∫

〈g〉†h dV =

∫

g〈h〉 dV (71)

for arbitrary functions g and h (see also [16]). Also, by a slight abuse of notation, we

define 〈n〉† =
∫

〈f〉† dW and similarly for the other velocity moments. However, in a finite

element PIC code as it is used here, one can easily handle the adjoint operator since the

field equations are formulated in a weak form.

Finally, the field equations read as follows

−∇·
∑

s n0,sms

B2
∇⊥Φ =

∑

s

qs〈ns〉† +~b·∇λ (72)

− 1

µ0
∇·∇⊥A‖ +

∑

s

(

q2s
ms

SAh
‖

)

=
∑

s

〈j‖,s〉† (73)

− 1

µ0

∇·∇⊥A‖ +
∑

s

(

q2s
ms

SAh
‖

)

=
∑

s

〈j‖,s〉† −
∂λ

∂t
(74)

∂As
‖

∂t
+~b·∇Φ = 0 (75)

with

S =

∫

〈fs〈·〉〉† dW (76)

the skin-depth operator (in order to arrive at the usual field equations one needs to use the

approximation S ≈ ns). Combining Eqs. (73, 74) gives the time evolution equation for λ as

∂λ/∂t = 0. Utilising the initial conditions for λ we choose λ(t = 0) = λ0 with ~b·∇λ0 = 0.

The λ term in Eq. (72) then vanishes, returning the usual field equation for Φ.

Defining a Lagrangian density L̃ by L =
∫

L̃ dV Noether’s theorem (see e.g. [14]) gives a

conserved quantity C

C =

∫

[(

∑

j

∂L̃

∂ηj,t
ηj,t − L̃

)

X t +
∑

i,j

∂L̃

∂ηj,t

∂ηj

∂Ri
X i

]

dV (77)
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if the action is invariant with respect to an infinitesimal transformation. Here, X = (X i, X t),

with i = 1 . . . 3, is the infinitesimal generator of the transformation in four dimensional ~R-

t-space and ηj denotes the dynamical fields appearing in L̃ (with ηj,t their time derivative).

From time-translation invariance thus follows the conserved energy, using Eqs. (72, 73, 75),

as

Etotal =
∑

s

∫

fs

[

ms

2
u2
‖ + µB

]

dW dV+

+
1

2

∑

s

∫
[

qs〈ns〉†Φ+ 〈j‖,s〉†(As
‖ − Ah

‖)−
q2sns

ms

As
‖ SAh

‖

]

dV.

(78)

Due to the term As
‖SAh

‖ , this is a non-trivial extension of the total energies in the v‖- or p‖-

formalism. Similarly, an expression for conservation of angular momentum in axisymmetric

systems can be obtained.

Approximate formulations

In this Section, we investigate consequences of approximations regarding higher order

terms. These approximations are often done in either the particle Lagrangian or the equa-

tions of motion and result in different physical models.

Starting from Eqs. (6, 7) the resulting mixed equations of motion, in slab geometry, are

given by Eqs. (13, 14). This, what we call model “M”, is the most complete and consistent

physical model. In Ref. [9] the equations of motion have been linearised by neglecting

quadratic field terms, thereby neglecting especially the “flutter” term 1/B∗
‖∇〈As

‖〉·(~b×∇〈Φ〉)
in Eq. (14). We call the resulting equations of motion model “Mlin”.

Sometimes the skin term fs
q2s
2ms

〈A‖〉2 in Eq. (68) is linearised by replacing fs by f0,s. This

approximation has the consequence of removing the nonlinear term from the equations of

motion; after transforming to mixed variables this then gives the often used model “PlinM”

where Eq. (7) is modified to

Hmixed =
ms

2
u2
‖ +msµB + qs(〈Φ〉 − u‖〈Ah

‖〉)−
q2s
ms

〈As
‖〉
(

1

2
〈As

‖〉+ 〈Ah
‖〉
)

. (79)

Consequently, the corresponding equations of motion are Eqs. (13, 14) with 〈Ah
‖〉2/2 replaced

by −〈As
‖〉(〈As

‖〉/2 + 〈Ah
‖〉) which especially introduces the non-negligible term 〈As

‖〉2.
In deriving the Lagrangian density for the mixed formulation this linearisation must

not be made, since it breaks some necessary cancellations between quadratic quantities
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in the bracket following fs. In cases where having a linear skin term is desirable, this

approximation must be made in the final field equations. Although this might ease numerical

implementation, one should be aware of the consequences, i.e. of breaking consistency.

V. NUMERICAL RESULTS

The behaviour of the pullback transformation scheme will now be illustrated for three

examples in slab geometry: the linear Alfvén wave as an example for an MHD mode, the lin-

ear ion-temperature-gradient-driven mode (ITG) and the (linear and nonlinear) collisionless

tearing mode as two examples for non-MHD-like modes. The gyrokinetic code GYGLES [6],

[17] was used for these simulations.

A. Convergence with time step and number of markers

The frequency ω (normalised to the analytic frequency ωA from Eq. (40)) of the Alfvén

wave in slab geometry as a function of the time step ∆t can be found in Figure 3, left.

The same parameters as in Ref. [7] were used: β = 6.08%, k⊥ρe = 4.54 · 10−4, k‖ρe =

1.23·10−5, B = 2.5T, Te = 5 keV. Only the electron dynamics was considered, i.e. the ions

only provided a neutralising background. In contrast to Ref. [7] the phase factor extraction

was not used which required the grid resolution in the z-direction to be increased in order

to reach convergence.

Curves are shown for the ACV-scheme (circles) and the PT-scheme (squares) using 104

electron markers for both. The ACV-scheme uses one iteration to adjust its control vari-

ate. For comparison also the result of the mixed-variable formulation (triangles) without

the resetting procedure (corresponding to the scheme proposed in [8]) is shown (4·105 elec-

tron markers were used). All schemes converge to the correct result with the same rate

(determined by a fourth-order Runge-Kutta time integration) but the PT-scheme allows a

time step approximately 50 times larger than the ACV-scheme. Already the mixed-variable

formulation gives an improvement: the time step is a factor of 10 larger than that needed

by the ACV-scheme. Note that for all curves in Fig. 3 the frequencies are already accurate

up to 5%.

Convergence with the number of electron markers Np,e is shown in Figure 3, right.
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The convergence of the ACV-scheme (circles, ∆t = 10−9 s) and the PT-scheme (squares,

∆t = 5·10−8 s) is very similar. Comparing with the result from the mixed-variable formula-

tion without application of the resetting procedure (triangles, ∆t = 10−8 s) shows that the

inclusion of the resetting procedure reduces the number of needed markers by a factor of

about 50. Thus, the PT-Scheme behaves comparably to the ACV-scheme when it comes to

its very low statistical noise property.

For the tearing mode simulations, the basic geometry was the same as in Ref. [18]: A

slab with a strong guiding field Bz in the z-direction and a sheared field

By = By,0 erf

(

x− 1
2
Lx

Ls

)

(80)

pointing in the y-direction. From By follows the electron current used in a shifted

Maxwellian. The parameters By,0, Lx, Ls determine the strength of the field, the x-width of

the slab and the shear length, respectively. The size of the slab is 10×10 in x and y (all

lengths normalised to the ion gyro-radius); the other parameters are Ls = 0.5, By,0/Bz =

0.02, β = 4 ·10−3. In the simulations 128 grid points in the x-direction and 106 electron

markers were used (with the ions providing a neutralising background) and only the lowest

ky mode was kept. In the left of Figure 4 the frequency of the linear tearing mode is dis-

played for the ACV- and the PT-scheme. The latter scheme permits only a modestly larger

time step.

Results for the linear electromagnetic ITG mode are shown at the right of Figure 4. The

simulation parameters are similar to the ones used in the ITG simulation of a ϑ-pinch in

Ref. [19]. However, we take here the slab approximation with a tanh-like profile for the ion

and electron temperature, a flat density profile, β = 20% and 106 ion (with gyro-averaging

neglected) and electron markers. Again, the time step convergence of the PT-scheme is

better than that of the ACV-scheme, allowing for approximately a factor of two larger time

step. However, the convergence of the frequency of the ITG mode with regard to the marker

number shows that both the PT-scheme and the ACV-scheme behave the same.

From these examples one concludes that for MHD modes the PT-scheme allows a much

larger time step compared with the ACV-scheme, while for strongly non-MHD-like modes it

may give a factor of two or less. In addition, the PT-scheme shares the very low statistical

noise level property with the ACV-scheme. This is the result of the resetting procedure

which diminishes Ah
‖ and therefore the adiabatic part of the distribution function in some
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cases dramatically.

B. Nonlinear tearing mode

The collisionless slab tearing mode provides a simple but nontrivial nonlinear test case

for comparing different simulation schemes. Except for a smaller time step of ∆t = 5·10−9 s,

which had to be adjusted for the nonlinear simulation, all parameters were the same as used

in the last section. However, four times as many, i.e. 4 ·106 electron and ion markers were

used in the simulation and gyro-averaging, though merely of small importance for this set

of parameters, was taken into account.

The different mixed-variable models described at the end of Section IV are now used

within the PT-scheme; i.e. relation Eq. (15) is used to eliminate ∂As
‖/∂t and the resetting

procedure is applied. Especially note that in the PT-scheme Ah
‖ is set to zero at the beginning

of each time step and will evolve to small values during the sub-time steps of the multi-step

integrator. In general, we have Ah
‖ → 0 for ∆t → 0. As a consequence, in all the models the

Ah
‖ terms in the equations of motion are typically very small.

The results of the simulations are displayed in Fig. 5, where the total fluctuating field

energy for each simulation run is shown. In the linear phase the energies for all models

are the same but they differ significantly in the initial nonlinear phase. For later times the

energies for models “M” and “Plin” oscillate about a constant value, while the energy for

model “Mlin” shows a downward trend and finally reaches the level of model “PlinM” after

a long time. At the end of the simulation the energies for models “PlinM” and “Mlin” are

about 15% higher than for model “M”. In the linear phase the mode structure of A‖ for

all models is, as expected, identical (Fig. 6, top, left). In the early nonlinear phase (Fig. 6,

top, right) differences start to emerge and all models give somewhat different results: The

maxima of A‖ for models “PlinM” and “Mlin” are about 5%, respectively 15%, higher than

for model “M”. But more importantly, model “Mlin” gives a significantly flatter shape of

A‖ near the resonant layer at x = 0 compared with the other models. In the late nonlinear

phase (Fig. 6, bottom) “Mlin” and “PlinM” give the same amplitude, somewhat in excess of

the amplitude from model “M”. Nevertheless, “Mlin” results in an unexpected asymmetric

shape for A‖, while model “PlinM” leads to a somewhat flatter curve than model “M”.

This behaviour points at an altered dynamics near the resonant layer in model “Mlin”. We
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conclude that for consistency of the mixed formulation it is necessary to keep all terms up

to second order in the equations of motion.

VI. CONCLUSIONS

The pullback transformation scheme proposed in [9] is a new scheme for the solution

of the electromagnetic gyrokinetic equation by particle methods. While the scheme could

already be used for linear simulations of fusion devices [10], we here aimed at investigating

its numerical behaviour more fundamentally.

The scheme combines a splitting of the parallel vector potential A‖ into two parts As
‖ and

Ah
‖ with a special coordinate transformation in parallel velocity in order to gain the freedom

to postulate a field equation for As
‖. This allows us to shift part of the parallel dynamics from

the particles to the field equation, thus reducing the parallel dynamics significantly. The

resulting mixed formulation equations are then combined with a resetting algorithm to yield

an efficient explicit numerical integration method (the pullback transformation scheme).

From a numerical dispersion relation for the model of a slab Alfvén wave we could conclude

that the scheme behaves very similarly to an implicit v‖-scheme.

The scheme avoids a large adiabatic part in the distribution function which usually trig-

gers an extremely high statistical noise level in conventional PIC methods. Also, it allows the

time step to be increased, in some cases dramatically. Especially for MHD modes more than

an order of magnitude could be achieved. This makes the scheme superior to other schemes,

such as e.g. the adjustable control variate scheme, which only addresses the statistical noise

level problem.

We were able to generalize the scheme so that it can be used for nonlinear simulations

and to consistently derive the mixed formulation from a field Lagrangian, thus putting it

on solid theoretical ground. In addition, an expression for the conserved energy was given.

The example of a nonlinear simulation for the slab tearing mode showed that there can be

significant differences between simplified physical models, and that linearisation at any stage

of the derivation and implementation should be avoided.

Overall, the scheme is now mature and ready to be used for production runs of nonlinear

electromagnetic simulations.
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Captions

Fig. 1: Graphical representation of the resetting procedure: The solid/dashed line shows

the trajectory of a particle in u‖, respectively v‖-coordinates. After each ∆t the resetting

is applied and u‖ (filled circles) of the particle is transformed to v‖ (open circles). The

transformation itself is just a shift by (qs/ms)A
h
‖ .

Fig. 2: Real (top) and imaginary (bottom) part of the solution ω̄ of the exact (dotted) and

of the numerical dispersion relations (v‖-scheme: dashed, pullback transformation scheme:

solid) as a function of β. Left: k̄⊥ = 2·10−4,∆t̄ = 10−6, right: k̄⊥ = 0.25,∆t̄ = 1.

Fig. 3: Convergence with time step ∆t (left) and electron marker number Np,e (right)

for the frequency ω of the Alfvén wave using the adjustable control variate scheme (cir-

cles), the mixed formulation without pullback transformation (triangles) and the pullback

transformation scheme (squares).

Fig. 4: Convergence with time step ∆t for the frequency ω of the tearing mode (left) and

the ITG mode (right) using the adjustable control variate scheme (circles) and the pullback

transformation scheme (squares).

Fig. 5: Total fluctuating field energy as a function of time for the three models “Mlin”

(dotted), “PlinM” (dashed) and “M” (solid).

Fig. 6: The magnetic potential A‖ at t = 8·10−7 s (top, left), t = 2·10−6 s (top, right) and

t = 10−5 s (bottom) for the three models “Mlin” (dotted), “PlinM” (dashed), “M” (solid).
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