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Abstract.
Alfvén eigenmodes may be important in driving fast particle transport in magnetic
confinement fusion devices, with potentially deleterious results. To explain and
predict this behaviour, numerical simulations are necessary. In order to predict
transport, modes must be simulated through to their nonlinear saturated state.
In this work, the first fully gyrokinetic self-consistent global simulations are
performed that treat the nonlinear wave-particle interaction between fast particles
and a single Toroidal Alfvén Eigenmode in a tokamak. It is shown that, in a
standard benchmark case, two gyrokinetic codes produce consistent results. There
is a polynomial relationship between the saturated perturbation level, δB/B0, and
the linear mode growth rate, γL, whose exponent reduces at higher γL. The fully
gyrokinetic results are shown to qualitatively agree with those obtained using
perturbative and non-perturbative hybrid models, the saturated perturbation
level depending on the background damping.

1. Introduction

Alfvén eigenmodes are global electromagnetic modes, which exist in toroidal magnetic
confinement fusion devices and can be driven unstable by fast particles created by
heating and fusion. This can result in excessive transport of particles and energy which
can, for example, cause damage to the device and therefore reduce its operational
availability [1–3]. It is therefore important to understand and be able to predict these
phenomena in order to avoid and mitigate them. Codes that numerically solve kinetic
and fluid equations are the primary means of doing so.

Currently a number of codes are used to study Alfvén wave physics, implementing
models of varying complexity and physical completeness. More complete models
include more physical effects while, in general, simpler models are faster and less
susceptible to numerical limitations on the parameter space that they can model. For
instance, they can be less susceptible to numerical limitations such as the cancellation
problem [4, 5]. The electromagnetic gyrokinetic model is one of the most complete,
in which kinetic equations are solved for all plasma species with the fast gyromotion
decoupled [6, 7]. Global electromagnetic eigenvalue codes such as LIGKA [8] have
permitted detailed studies of linear Alfvén wave physics, but cannot be directly applied
to nonlinear simulations.
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Global gyrokinetic initial value codes such as GYGLES, EUTERPE [9, 10], and
ORB5 [11] are more easily adapted for nonlinear simulations, but have historically
suffered from the cancellation problem (see above), which limits simulations of modes
of long wavelength and at higher plasma β. In this paper the results of the first
nonlinear simulations of Alfvén waves obtained using the global electromagnetic
gyrokinetic codes EUTERPE and ORB5 will be presented. EUTERPE is designed
to perform 3D global simulations, e.g. in stellarator geometry. ORB5 is designed for
axisymmetric simulations, and was extended to include electromagnetic effects in the
framework of the NEMORB project [12, 13]. ORB5 and EUTERPE solve physically
equivalent equations, formulated in different coordinate systems for different numerical
properties.

In addition to the fully gyrokinetic models, hybrid models of varying complexity
are possible. Typically either the bulk electron species, or the entire bulk plasma, is
described by a fluid equation instead of by a kinetic equation. The energetic particle
species, however, must be treated in a kinetic description as inverse Landau damping
is the key mechanism for energetic particles to drive an Alfvén wave unstable. In
addition to the choice of model for the bulk plasma, the mode may either be calculated
independently of the influence of fast particles and fixed, called the perturbative
description, or fast particles may be allowed to modify the structure of the mode, called
the non-perturbative or self-consistent description. In this work, two hybrid models
will be considered: FLU-EUTERPE, a non-perturbative fluid-electron, gyrokinetic
bulk and fast-ion model [14, 15], and CKA-EUTERPE, a perturbative reduced ideal
MHD bulk plasma, gyrokinetic fast ion model [16].

These hybrid approaches have been extensively exploited. Other examples
of self-consistent fluid-electron, gyrokinetic ion codes include GEM, GTC, and
XHMGC [17–19], while other examples of perturbative hybrid codes include NOVA-K,
CAS3D-K, AE3D-K and VENUS-K [20–23]. These codes differ in the completeness of
their MHD treatment of the bulk plasma, which can result in differing mode structure.
All, however, calculate a mode frequency independent of fast particle effects and then
a growth rate based on the power transfer between an applied gyrokinetic fast particle
species and a fixed mode.

In this paper, a standard reference case is used to compare the results of
the EUTERPE, ORB5, FLU-EUTERPE and CKA-EUTERPE models simulating
the nonlinear wave-particle interaction between a single Toroidal Alfvén Eigenmode
(TAE mode) and a fast particle population in tokamak geometry. In section 2, the
mathematical details of the models will be set out. In section 3, the two gyrokinetic
models will first be benchmarked, and then a full comparison will be made for all four
models over a range of values of the TAE linear growth rate. The paper concludes in
section 4.

2. Numerical models

As described in section 1, four models will be considered in this work: the
fully gyrokinetic models of EUTERPE and ORB5, which are physically equivalent
but formulated in different coordinate systems; the self-consistent fluid-electron
hybrid model FLU-EUTERPE; and the perturbative reduced ideal MHD plasma,
gyrokinetic fast ion hybrid model CKA-EUTERPE. EUTERPE and ORB5 solve
a gyrokinetic equation for each particle species, combined with a quasi-neutrality
and Ampére’s law equation for calculating the self-consistent effects of the field
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perturbations. EUTERPE’s gyrokinetic equations are formulated in the ‘mixed
variables’ formulation [24, 25], while the ORB5 equations are formulated in the
‘canonical momentum’ or p‖ formulation [7]. FLU-EUTERPE drops the gyrokinetic
equation for the electron species, instead solving a continuity equation for the evolution
of the electron density and Ohm’s law and pressure closure equations [15]. CKA-
EUTERPE consists of two codes: the reduced ideal MHD eigenvalue code CKA solving
the time-independent vorticity equation for the perturbed potentials, and gyrokinetic
EUTERPE in the p‖ formulation calculating power transfer with a fast ion species [16].
In this section these four models will be concisely described.

2.1. Full gyrokinetics - mixed variables (EUTERPE)

The nonlinear electromagnetic Particle-in-Cell (PIC) code EUTERPE solves the
gyrokinetic Vlasov equation for arbitrary species in general 3D geometry [10],

∂f1s
∂t

+ ~̇R · ∂f1s
∂ ~R

+ v̇‖
∂f1s
∂v‖

= − ~̇R
(1)

· ∂F0s

∂ ~R
− v̇(1)‖

∂F0s

∂v‖
, (1)

where the superscript (1) indicates the perturbed equations of motion - i.e. those
including only terms first order in perturbed fields φ and A‖ - and s = i, e,
or f indicates the species. The distribution function is split into perturbed and
unperturbed components, such that the total distribution function fs = F0s+f1s. The
background distribution functions, F0s, are prescribed, so that solving equation (1) for
f1s gives all information needed to calculate the total distribution function at the next
timestep. The unperturbed bulk plasma distribution functions, F0i,e, are taken to be
Maxwellian. For fast particle species other choices have been used, such as slowing
down distribution functions, but will not be employed in this work.

In the mixed variables formulation [24,25], the equations of motion ~̇R and v̇‖ are

~̇R =
(
v‖ −

q

m

〈
A

(h)
‖

〉)
~b∗ + (2)

1

qB∗‖

~b×
[
µ∇B + q∇

〈
φ− v‖A

(s)
‖ − v‖A

(h)
‖

〉]
v̇‖ = − 1

m

[
µ∇B + q∇

〈
φ− v‖A

(h)
‖

〉]
·~b∗ − (3)

q

m

∂A
(s)
‖

∂t
− µ

m

~b×∇B
B∗‖

· ∇
〈
A

(h)
‖

〉
where φ and A‖ = A

(s)
‖ + A

(h)
‖ are the perturbed electrostatic vector potentials

respectively, and µ is the magnetic moment. Parallel magnetic field perturbations
are neglected. B∗‖ = ~b · ∇ × A∗‖, where ~b∗ = ∇ × ~A∗. A∗ = ~A0 + (mv‖/q)~b is

the modified vector potential and ~A0 is the background vector potential, such that
~B0 = ∇ × ~A0. The background magnetic field unit vector ~b = ~B/B. The magnetic
moment is defined as µ = mv2⊥/2B. The gyroaverage operator is defined as

〈z〉 =

∮
dθ

2π
z
(
~R+ ~ρ

)
, (4)

where z is a scalar field. The gyroaverage is numerically performed by an N-point
fixed sum method.
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Self-consistent electrostatic and parallel magnetic potentials are calculated using
the quasi-neutrality equation in the long-wavelength approximation,

−∇

 ∑
s=i,e,f

q2sns
Ts

ρ2s

∇⊥φ
 =

∑
s=i,e,f

qsn1s, (5)

and parallel Ampére’s law, ∑
s=i,e,f

β̂s
ρ2s
−∇2

⊥

A
(h)
‖ = µ0

∑
s=i,e,f

j‖1s +∇2
⊥A

(s)
‖ . (6)

Here the perturbed gyrocentre density n1s(~x) =
∫
d6Zf1sδ

(
~R+ ~ρ+ ~x

)
and the

perturbed gyrocentre current j‖1s(~x) =
∫
d6Zf1sv‖δ

(
~R+ ~ρ+ ~x

)
, where d6Z =

B∗‖d
~Rdv‖dµdθ is the phase space volume, ρs =

√
msTs/eB is the thermal gyroradius

and β̂s = µ0n0sTs/B
2 is the EUTERPE normalised beta, corresponding to half the

plasma species beta. Finite Larmor radius (FLR) effects are neglected for electrons,
on account of the small size of the gyroradius. The background plasma densities are
constrained by the quasi-neutrality equation,

∑
s qsn0s = 0.

The distribution function is defined in terms of markers as follows,

f1s

(
~R, v‖, µ, t

)
=

Np∑
ν=1

wν(t)
1

J
δ
(
~R− ~Rν

)
δ
(
v‖ − v‖ν

)
δ (µ− µν) , (7)

where Np is the number of markets, wν is the marker weight and J is the Jacobian.

The fields φ and A
(s,h)
‖ are defined on a 3D grid in terms of finite elements,

φ (~x) =

Ns∑
l=1

φlΛl (~x) A‖ (~x) =

Ns∑
l=1

alΛl (~x) , (8)

where Λl (~x) are finite elements, Ns the number of finite elements, and φl and al are
spline coefficients.

An equation is also necessary to distribute A‖ between A
(s,h)
‖ , which here is

∂A
(s)
‖

∂t
+~b · ∇φ = 0, (9)

in analogy to the ideal MHD Ohm’s law. For a case with small perturbed parallel

electric field, therefore, A‖ will be accumulated primarily in A
(s)
‖ , with A

(h)
‖ small by

comparison. Additionally, by invoking the pullback transformation for the distribution

function, at each time step the accumulated A‖ can be accumulated in A
(s)
‖ [25].

Note that although the equations of motion here are valid for linear simulations,

a consistent derivation of nonlinear equations yields additional terms for ~̇R and v̇‖ of

higher order. All such terms are at least linear in A
(h)
‖ , however, and so are vanishing

for an ideal mode. In this work, we consider a mode that closely approximates the
ideal MHD result, which is necessary for it to have been considered accurately by
ideal perturbative codes [26]. In future work a derivation of the higher order nonlinear
terms [27] will be followed by a fuller exploitation of the mixed variables formulation
to treat also non-ideal modes in the nonlinear regime.
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2.2. Full gyrokinetics - p‖ formulation (ORB5)

The electromagnetic gyrokinetic equations implemented in the gyrokinetic code ORB5
are physically equivalent to those implemented in EUTERPE. However, the equations
are solved in a different coordinate system such that the formulation of the equations
of motion, quasi-neutrality equation, and Ampére’s law equation is different. The p‖

formulation is equivalent to the mixed variables formulation with A
(s)
‖ = 0 at all times,

meaning that equation 9 vanishes. The same Vlasov equation, equation (1), is solved,
but in this formulation the equations of motion are

~̇R =
(
v‖ −

q

m

〈
A‖
〉)
~b∗ +

1

qB∗‖

~b×
[
µ∇B + q∇

〈
φ− v‖A‖

〉]
(10)

v̇‖ = − 1

m

[
µ∇B + q∇

〈
φ− v‖A‖

〉]
·~b∗, (11)

the quasi-neutrality equation is

−∇ · n0ms

B2
∇⊥φ =

∑
s=i,e,f

qsn1s, (12)

and Ampére’s law is ∑
s=i,e,f

β̂s
ρ2s
−∇2

⊥

A‖ = µ0

∑
s=i,e,f

j‖1s. (13)

Numerically, a key difference between this formulation at the ‘mixed variables’
formulation described previously is the magnitude of the ‘skin terms’ proportional to
β̂s

ρ2s
in Ampére’s law. These terms are the origin of the cancellation problem, which

scales with the plasma β and inversely with the species mass and k⊥ρi. Whereas in

the mixed variables formulation these terms are proportional to A
(h)
‖ , which can be

very small, in the p‖ formulation these terms are proportional to the total perturbed
vector potential A‖. The cancellation problem is therefore often much more severe in
the p‖ formulation.

2.3. Fluid-electron hybrid model (FLU-EUTERPE)

The fluid-electron hybrid model couples the gyrokinetic Vlasov equation, with
corresponding equations of motion, for the bulk ions and an optional fast ion species
to a fluid equation for the evolution of the perturbed density of the electrons.
This continuity equation is derived as a zeroth-order moment of the drift kinetic
equation [14], yielding

∂n1e
∂t

+ n0 ~B · ∇
(u‖1e
B

)
+B~vE · ∇

(n0
B

)
+ (14)(

∇×A‖~b
)
· ∇
(n0u‖0e

B

)
+

n0 (~v∗ − ~vE) · ∇B
B

+
∇× ~B

B2
·
[
n0∇φ−

∇P1e

e

]
= 0

where

~vE =
~b×∇φ
B

, ~v∗ = 2
~b×∇P1e

n0eB
. (15)
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The equation for the perturbed electron pressure is

∂P1e

∂t
= −~vE · ∇P0 = −

~b×∇φ
B

· ∇n0T0. (16)

The perturbed vector potential is related to the electrostatic potential by an Ohm’s
law with optional resistivity term,

E‖ = −∇‖φ−
∂A‖

∂t
= −η∇2

⊥A‖, (17)

where η parametises the resistivity.
The fluid and gyrokinetic species are related by Ampére’s law,

en0u‖1e =
∑
s=i,f

j‖s +
1

µ0
∇2
⊥A‖ (18)

and the quasi-neutraliy equation, where u‖1e and n1e are fields discretised on the grid,
while j‖1i and n1i are quantities discretised with markers.

2.4. Perturbative reduced ideal MHD hybrid (CKA-EUTERPE)

CKA-EUTERPE is a perturbative hybrid code package. The reduced ideal MHD
eigenvalue code CKA calculates an eigenfunction by solving the vorticity equation,

ω2∇ ·
(

1

v2A
∇⊥φ

)
+∇ ·

[
~b∇2
⊥

(
~b · ∇

)
φ
]

+∇ ·
[
~b∇ ·

(
µ0j‖1

B
~b×∇φ

)]
−∇ ·

(
2µ0

B2

[(
~b×∇φ

)
· ∇P1

] (
~b× κ

))
= 0, (19)

to yield the perturbed electrostatic potential, φ. The curvature tensor, κ, is defined
as

~κ = ~b · ∇~b =
(
∇×~b

)
×~b (20)

Note that the Fourier transform φ (s, t) = φ (s) e−iωt has been applied to eliminate
the time derivative. CKA is an eigenvalue code solving a time-independent problem.
CKA therefore yields a reduced ideal MHD real frequency, in addition to the time-
independent mode structure without the influence of fast particles. These are then
passed to the gyrokinetic code EUTERPE, which models a species of fast ions in order
to calculate the power transfer to or from the mode.

3. Numerical results

In this section we consider the nonlinear physics of the ITPA toroidal Alfvén eigenmode
(TAE) benchmark case [26, 28]. The magnetic equilibrium is that of a large aspect
ratio circular tokamak, with major radius R0 = 10.0 m and minor radius ra = 1.0 m.
The magnetic field strength on axis B0 = 3.0 T, and the safety factor profile is given
by the equation q (r) = 1.71+0.16 (r/a0)

2
. The bulk plasma density and temperature

profiles are flat, with a background density n0 = 2 × 1019 m−3 and temperatures
Ti = Te = 1 keV. The bulk ion species is hydrogen.

In figure 1, the resulting Alfvén continuum is plotted for mode numbers n = −6
and m = 10, 11. A toroidicity gap is visible centred at s = 0.25 (note that, for circular
flux surfaces, s = r2). The ITPA TAE benchmark case concerns this single mode.
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Figure 1. The continuum for the ITPA toroidal Alfvén eigenmode benchmark
case, around the n = −6, m = 10, 11 toroidicity gap [26,28].

A fast minority deuterium species is applied with a density given by the equation

nf (r) = n0f exp

(
−c1 tanh

(
r − c2
c3

))
(21)

where n0f = 7.51352 × 1016 m−3, c1 = 0.666400, c2 = 0.49123 and c3 = 0.198739.
The fast particle distribution function is Maxwellian with the temperature fixed at
Tf = 400 keV except where explicitly stated otherwise. This is the fast particle
temperature at which the linear growth rate is a maximum given the other parameters.
In all simulations Dirichlet boundary conditions are applied at the axis and at the edge.

Nonlinearly we expect the behaviour of the mode to divide into at least two
distinct stages. In the first, linear stage, the amplitude of the perturbed potentials
is small relative to the background fields. The nonlinear terms proportional to φf1s
and A‖f1s are correspondingly small, and the behaviour of the mode does not differ
substantially to the linear treatment in [26]. In the second, nonlinear stage, the
nonlinear terms become comparable in magnitude to the linear terms, and should
produce a saturation in the mode amplitude.

In this paper only the wave-particle nonlinearity is considered. This means that
the nonlinear Vlasov equation, equation 1, is solved only for the fast particle species,
s = f . For the bulk species s = i, e, the linearised Vlasov equation

∂f1s
∂t

+ ~̇R
(0)

· ∂f1s
∂ ~R

+ v̇
(0)
‖
∂f1s
∂v‖

= − ~̇R
(1)

· ∂F0s

∂ ~R
− v̇(1)‖

∂F0s

∂v‖
, (22)

is solved instead, where ~̇R
(0)

and v̇
(0)
‖ correspond to the equations of motion excluding

terms proportional to the perturbed fields φ and A‖.

3.1. Gyrokinetic validation

In this section the numerical solution of the gyrokinetic equations for the ITPA TAE
case is compared using the EUTERPE and ORB5 codes. There is a discrepancy
between the linear growth rates calculated using each code [13, 26]. This discrepancy
may be due to e.g. differences in the discretisation of the numerical equilibrium, or
in the different normalization of the fast-particle density profile. As it is known that
the nonlinear physics is parameterised by the linear growth rate, for the nonlinear
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Figure 2. The evolution of the perturbed parallel vector potential in EUTERPE-
ORB5 normalised units, A‖∗, plotted for EUTERPE solving the gyrokinetic
Vlasov-Maxwell equations in the mixed variables formulation and ORB5 solving
the same system of equations in the p‖ formulation. Note the close agreement in
saturated amplitude despite differing initial amplitudes.

benchmark these linear differences are normalised by adjusting the fast particle
concentrations such that the linear growth rate is equal in both codes.

The ITPA TAE parameters are taken with Tf = 500 keV. The fast particle
concentration used in EUTERPE is reduced by a factor 0.3, such that the same linear
growth rate γL = 3.5×104 rads−1 is calculated by both codes. Only the wave-particle
nonlinearity is considerd here, so the linear Vlasov equation is solved for bulk ions and
electrons, while the nonlinear Vlasov equation is solved for fast ions.

In figure 2, the normalised perturbed parallel vector potential, A‖∗, is plotted for
both codes. This is defined as A‖∗ = B∗r∗, where B∗ is the magnetic field strength

at the magnetic axis, r∗ =

√
kBT∗mp

|e|B∗
, and T∗ = Te(s = 0.5). Good agreement is

seen, giving grounds for confidence in the nonlinear gyrokinetic approach, although
differences may be present due to differences in treatment of the linear physics by the
two codes.

3.2. Model comparison and saturation level scaling

Having established the validity of the gyrokinetic approach, we consider the case
with an additional two models: the nonlinear fluid-electron hybrid model FLU-
EUTERPE with and without resistive damping, and the perturbative hybrid model
CKA-EUTERPE. In all cases, nonlinear terms have only been considered in solving
the gyrokinetic Vlasov equation for the energetic particle population, which is taken
to have a temperature Tf = 400 keV. The difference, as detailed in section 2, is in the
completeness of treatment of the bulk plasma. Non-linear simulations in this section
have been performed with a reduced mass ratio of me/mi = 0.005 in used in order to
reduce computational requirements; simulations with realistic mass ratio have been
performed for the nominal ITPA parameters and do not show a significant difference.

In table 1, the computational requirements of ORB5, and each model in the
EUTERPE code package, for the ITPA TAE benchmark case in the linear regime are
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Model Markers Timestep CPU-hrs (to 105Ω−1c )
CKA-EUTERPE 8×105 20.0 6
FLU-EUTERPE 2×105 10.0 18
EUTERPE (p‖) 3×107 0.75 80000
EUTERPE (mixed) 3×106 10.0 256
ORB5 (p‖) 3×107 5.0 22000

Table 1. A table depicting the computational requirements of each model for
the linear ITPA TAE case with nominal parameters to reach an ‘end time’ of
105 Ω−1

c , at which all the properties of interest of the mode are well established
and can by diagnosed with good accuracy.

detailed. The computational requirements of nonlinear simulations are greater, but
proportional to those of the linear simulations, increased primarily by the need for
higher toroidal resolution. Both the hybrid models and the mixed variables gyrokinetic
scheme offer significant improvements over the gyrokinetic model in p‖ formulation.
The mixed variables formulation provides a two order of magnitude reduction in
required CPU-hours for this case the fluid-electron hybrid model provides a further
order of magnitude reduction.

A key quantity is the amplitude at which the magnetic field perturbation saturates
nonlinearly. In figure 3, the maximum value of δB/B0 in the simulation domain is
plotted as it evolves in time for the gyrokinetic and fluid-electron hybrid EUTERPE
models. Distinct linear growth and nonlinear saturation stages are visible. In both the
fully gyrokinetic and the fluid-electron hybrid model without resistive damping the
nonlinear stage begins at the same saturated amplitude level, order δB/B0 = 10−3.
This is consistent with previous numerical work and is in order of magnitude agreement
with observed experimental values [29], although it should be noted that the device
parameters considered here are far from experiment.

The undamped fluid-electron hybrid model, however, exhibits a sub-exponential
upward drift in δB/B0, after the onset of the nonlinear stage and before a clear
saturated amplitude is reached. This is a known feature of the perturbative hybrid
approach. The presence of additional physical damping mechanisms in the more
complete models may be the reason for the reduction in drift. The fully gyrokinetic
model exhibits some oscillation in the solution, depicted in figure 4, which creates
some uncertainty in the exact quantitative saturated perturbation amplitude.

Drift and oscillation is substantially eliminated in the fluid-electron hybrid model
by the application of finite resistive damping (blue). Here a resistivity corresponding to
a Lundquist number of order 104 is considered. However, finite resistivity also reduces
the saturated perturbation amplitude to order 10% of the undamped value. The need
to apply an unphysically strong damping to obtain a clear result is a drawback of this
approach.

In previous work performed with the nonlinear kinetic-MHD perturbative hybrid
code package CKA-EUTERPE [16, 30], the relationship between the linear growth
rate γL of the TAE and the saturated amplitude of the magnetic field perturbation
was considered. Taking otherwise the same physical and numerical parameters as
earlier in this section, the linear growth rate is varied by scaling the fast particle
concentration by a factor between 0.5 and 2.0. The linear growth rate can also be
altered by removing finite Larmor radius (FLR) effects.
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Figure 3. Evolution of the perturbed magnetic potential for EUTERPE models
of decreasing complexity: fully gyrokinetic (black) and fluid-electron hybrid model
with (blue) and without (red) resistive damping. Note that resistive damping
strongly affects the saturated amplitude.
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Figure 4. Comparison of the evolution of the maximum of the ratio of the
perturbed magnetic potential to the background magnetic field, plotted on
logarithmic (left) and linear (right) scales, from ORB5. Note there is significant
oscillation in the solution.

In figure 5, the relationship between δB/B0 at saturation and γL is plotted for
three models: the fully gyrokinetic model (in mixed variables and p‖ formulations),
the fluid-electron hybrid model with resistive damping, and CKA-EUTERPE with ad-
hoc damping. The fluid-electron hybrid model results are plotted with and without
consideration of FLR effects.

In the case of fluid-electron hybrid simulations without damping, often no clear
saturated amplitude is obtained, with the perturbation continuing to increase sub-
exponentially for large time. In the fully gyrokinetic model, there is some ambiguity
in the saturated level to be obtained. In this case, all values have been taken early
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amplitude δB/B0 for the nonlinear m = 10, 11, n = −6 ITPA TAE case plotted
for perturbative hybrid model FLU-EUTERPE with (FLR) and without (ZLR)
finite Larmor radius effects, and fully gyrokinetic codes EUTERPE and ORB5.
The absolute amplitude is influenced by strength of applied damping, but the
qualitative relationship is the same. Here the χ (toroidal) component of δB/B0

is plotted; the total δB/B0 is of the same order of magnitude.

in the saturated phase before the onset of any sub-exponential drift, an average being
taken after the first inflection point following saturation.

All three models show qualitatively the same trend, with a divergence in level
between those models with (fluid-electron hybrid, perturbative hybrid) and without
(fully gyrokinetic) additional damping mechanisms. The inferred damping rate γd
as nf → 0 is equalised for the fluid-electron and perturbative hybrid models at
γd = 4 × 103 rad s−1. Note however that the implementation of damping differs
between the two models, with the resistive damping of the fluid-electron hybrid
model entering through a finite E‖, while the ad-hoc damping implemented in the
perturbative hybrid model retains an ideal MHD Ohm’s law. In figure 6, the saturated
amplitude is plotted for varying applied damping rates γd. For the perturbative hybrid
model CKA-EUTERPE, the saturated amplitude diverges at low γd.

Without FLR effects, the fluid-electron hybrid model results exhibit the same
qualitative trend but with a consistently higher saturated amplitude. This may be
due at least in part to a reduction in damping by the bulk ions. Any influence of kinetic
bulk ion effects is not present in the perturbative hybrid model CKA-EUTERPE.

The two fully gyrokinetic models exhibit the same trend at a higher level due to
the absence of artificial damping. The two gyrokinetic codes show good quantitative
agreement with one another. It is however significant that the agreement is not
quantitatively as close as that seen in the direct comparison for a single case in figure 2,
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due to the uncertainty in the time at which to measure the saturated field perturbation
amplitude.

4. Conclusion

In previous work a simple case has been considered in which a toroidal Alfvén
eigenmode is driven linearly unstable via inverse Landau damping by fast particles.
This case has been considered with a number of numerical tools, including fully
gyrokinetic and fluid-kinetic hybrid models of varying completeness [26, 28]. In
subsequent work, this case has also been considered nonlinearly with hybrid tools,
such as the perturbative hybrid model CKA-EUTERPE, described in section 2.4 of
this paper. In this work, simulations have been performed using a hierarchy of models
including fully gyrokinetic, resistive and ideal non-perturbative fluid-electron hybrid,
and perturbative reduced ideal MHD-kinetic hybrid.

The fully gyrokinetic simulations, performed nonlinearly for electromagnetic
global modes for the first time, have been successfully benchmarked between two
codes, EUTERPE and ORB5. The relationship between the linear growth rate of
the mode, γL, and saturated magnetic field perturbation, δB/B0, has been studied.
With all models a polynomial relation (i.e. log-log linear) between γL and δB/B0

is observed, where δB/B0 increases with increasing γL. When γL is increased above
105 rad s−1 growth in δB/B0 with γL weakens.

All models exhibit the same qualitative relationship between γL and δB/B0. The
absolute level of the saturated perturbation amplitude, however, is determined by the
linear damping level. In the hybrid models, some artificial damping is required in order
to obtain a stable saturated perturbation level. The absolute level of the saturated
perturbation is therefore lower for these models than for the fully gyrokinetic model,
in which physical and numerical damping suffices to obtain a measurable saturated
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level. The neglect of bulk and fast ion FLR effects is shown to increase the saturated
perturbation level at fixed γL, but does not alter the qualitative relationship between
δB/B0 and γL.

These results suggest that damping due to the bulk plasma has little qualitative
influence on the nonlinear physics of a single TAE mode, but correctly modelling such
damping is important in obtaining an accurate quantitative result for the saturated
perturbed amplitude. That physical processes in the fully gyrokinetic models are able
to replace an ad-hoc applied damping in the fluid-kinetic hybrid models is a clear
advantage of the more complete treatment.

Having established the validity of these models in a simple case, and identified
fundamental physical characteristics of such a system, in future work the nonlinear
interaction of multiple modes and zonal structures through the bulk plasma can
be considered using both the fully gyrokinetic and the fluid-electron hybrid models.
Ultimately, a realistic treatment of collisions would allow the resistive damping to be
considered self-consistently, which we propose is important for quantifying transport.

In this paper, a single mode benchmark case has been considered. Nonlinear
interaction between multiple modes is, however, expected to be significant in predicting
transport. Modes can interact through nonlinear modification of the fast particle
profile, which influence drive and saturation. They can also interact directly
via nonlinear terms in the Vlasov equations for the bulk ions and/or electron
species. Preliminary work using EUTERPE and ORB5 suggests that the inclusion
of multimode effects tends to reduce the calculated saturated perturbation amplitude.
This broad subject will be addressed in greater detail in subsequent publications.

Finally, the p‖ [7] and mixed variables [25] formulations of the gyrokinetic
equations of motion have been benchmarked nonlinearly in this case and the
mixed variables formulation shows a substantial reduction in required computational
resources. It is believed that in a case where finite E‖ effects are important, extended
mixed variables equations including higher order terms must be solved [27]. This will
be considered in future work.
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