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Abstract

The CASTOR3D code, which is currently under development, is able to perform linear
stability studies for 2D and 3D, ideal and resistive tokamak equilibria in presence of ideal
and resistive wall structures and coils. Solving an extended eigenvalue problem, the code
takes simultaneously plasma inertia and wall resistivity into account. The CASTOR3D
code is a hybrid of the CASTOR 3DW stability code and the STARWALL code. The for-
mer is an extended version of the CASTOR and CASTOR FLOW code, respectively. The
latter is a linear 3D code computing the growth rates of resistive wall modes in the pres-
ence of multiply-connected wall structures. The CASTOR 3DW code, and some parts of
the STARWALL code have been reformulated in a general 3D flux coordinate represen-
tation that allows to choose between various types of flux coordinates. Furthermore, the
implemented ”Lüst Martensen term” in the STARWALL part allows to investigate vertical
displacement events. In this paper, we outline the theoretical concept, and present some nu-
merical results which illustrate the present status of the code and demonstrate its numerious
application possibilities.

Keywords: MHD, linear stability, 3D resistive equilibria, flux coordinates, resistive wall modes,
vertical displacement events.
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1 Introduction

The axisymmetry of tokamaks is always disturbed by the toroidal field ripple and small error
fields. However, this asymmetry is usually neglected in equilibrium and linear stability studies.
The situation changes if resistive walls with a complex three-dimensional structure are installed
in tokamaks. These wall structures reduce the growth rates of external modes to the resistive
time scale, and, therefore, allow for feedback stabilization [1, 2]. But, being non-axisymmetric
they also cause a coupling of the toroidal harmonics [3, 4, 5, 6]. Furthermore, 3D effects may
be generated e.g. by asymmetrically placed Test Blanked Modules (TBMs) in ITER [7], and/or
by additional external fields produced by Magnetic Perturbation (MP) coils. The latter are
applied to mitigate or even to suppress Edge Localized Modes (ELMs) [8, 9]. TBMs and/or
MP fields lead to a corruagtion of the magnetic flux surfaces up to ten times larger than the
displacement caused by the field ripple. Therefore, such tokamak equilibria are to be considered
three-dimensional [10].

The three-dimensional equilibrium geometry and/or the presence of 3D wall structures require
the use of 3D stability codes. There are several 3D, ideal, linear stability codes, for exam-
ple: CAS3D [11], TERPSICHORE [12], and STARWALL [5, 13]. The latter takes multiply-
connected resistive wall structures into account. However, it neglects the plasma inertia and is,
therefore, restricted to the study of resistive wall modes. Furthermore, these codes use straight
field line coordinates, the so-called Boozer coordinates [14]. These coordinates work fine for
stellarators, but they are not the best choice in the boundary region close to the separatrix of a
tokamak equilibrium. There, the poloidal coordinate lines strongly bend towards the X-point
and become almost parallel to the radial ones. That is, especially, in case of ELMs and resistive
wall modes these coordinates may cause numerical problems.

So, the motivation to develop a new 3D linear code for stability studies of tokamak equilibria
is manyfold. The CASTOR3D code, which is currently under development, shall be used for
2D and 3D linear stability studies including: (i) all relevant physics effects such as: plasma
resistivity, plasma flow, diamagnetic drift, etc., (ii) the presence of coils and multiply-connected,
ideal and resistive wall structures, (iii) the simultaneous consideration of plasma inertia and
resistive wall effects. Using appropriate flux coordinates, the code should be able to handle
stability studies of VDEs, external modes and ELMs.

The CASTOR3D code is a hybrid of the CASTOR 3DW stability code [15] and the STAR-
WALL code [5]. The CASTOR 3DW code is an extended version of the CASTOR [16, 17],
and the CASTOR FLOW code [18], respectively. It uses the vacuum solution of the STAR-
WALL code and takes the coupling of the toroidal harmonics caused by 3D wall structures
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into account. However, this code version is restricted to axisymmetric equilibria and ideal wall
structures. Therefore, the CASTOR 3DW code and some parts of the STARWALL code have
been rewritten in a general 3D flux coordinate representation. This representation allows to
choose between various types of flux coordinates, and to perfom linear stability studies of 2D
and 3D, ideal and resistive tokamak equilibria. Additionally, the CASTOR3D code is able to
solve an extended eigenvalue problem that takes plasma inertia and wall resistivity into account
simultaneously. Furthermore, the implemented ”Lüst Martensen term” [19] in the STARWALL
part [5] allows to investigate Vertical Displacement Events (VDEs).

In Section 2 we present four test equilibria and their representation in different flux coordinate
systems. These equilibria are used to illustrate the present status of the CASTOR3D code and
to demonstrate its numerious application possibilities. Subject of Section 3 is the theoretical
formulation of the plasma part (Sect. 3.1 and 3.2). Numerical results are presented for 2D
and 3D, ideal (Sect. 3.3) and resistive (Sect. 3.4) internal modes. Properties of various flux
coordinate systems are compared. Section 4 deals with the vacuum part of the CASTOR3D
code. Boundary conditions (Sect. 4.1), and the two implemented methods for the computation
of the vacuum response to unit perturbations, i.e. the solution of the Laplace equation (Sect.
4.2), and the variational method implemented in the STARWALL part (Sect. 4.3) are described.
The various methods are benchmarked in Section 4.4. The merging of plasma and vacuum
parts is subject of Section 5. The extended eigenvalue problem is formulated in Section 5.1,
while results obtained for VDEs in presence of a resistive wall and ideal coils are presented in
Section 5.2. Finally, in Section 6 a summary of the present code status, and an outlook to further
extensions and improvements are given. The used coordinate systems, and the discretization of
coil bands into triangles are described in more detail in the Appendices 1 and 2, respectively.

2 2D and 3D test equilibria

The two- and three-dimensional equilibria, which are the basis for the presented stability stud-
ies, are computed with the NEMEC code [20, 21]. This ideal equilibrium code relies on energy
minimization, and assumes nested flux surfaces. Since the squared magnetic field, ~B2

0 , is in-
tegrable, the radial differencing performed during the equilibrium calculation is insensitive to
the singular behaviour of the current density at rational surfaces of 3D equilibria [22]. There-
fore, no special treatment of rational surfaces, such as flattening of the pressure profile at these
surfaces, is required. This is a very favourable property of the code, especially important in
case of 3D tokamak equilibria which usually include a plenty of rational surfaces compared to
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low-shear stellarators. The NEMEC code uses an optimized Fourier representation of the flux
surfaces [23], with the latter labled by the normalized toroidal flux. As result, the code yields
the Fourier spectra of the flux surfaces and the equilibrium magnetic field as smooth functions
of the normalized toroidal flux. These Fourier spectra, or their transformation into straight field
line coordinates, are used to compute the metric coefficients needed by the CASTOR3D code.
However, although no singularities at rational surfaces have to be considered during the equilib-
rium or succeeding stability computations, one has to keep in mind that the assumed nested flux
surfaces are only an approximation of the real equilibrium solution, which may contain islands
or stochastic regions for 3D equilibria.

The numerious application possibilities of the CASTOR3D code, and the numerical accuracy
of its results are verified using four different plasma equilibria. All equilibria are chosen with
respect to their stability properties and the related numerical requirements, while their physical
relevance plays a minor role here. Nevertheless, two of them (AUG-T1 and AUG-T2) are
ASDEX Upgrade-type equilibria, in order to demonstrate the practicability of the CASTOR3D
code with respect to realistic stability problems.

Table 1. Equilibrium properties
unit circle ellipse AUG-T1 AUG-T2

A 1.60 10.00 2.93 3.32
Ra [m] 1.74 10.00 1.68 1.74
Za [m] 0.00 0.00 0.10 0.07
pa [kPa] 337.50 1.00 106.30 189.10
Ba [T] 0.93 2.25 2.91 2.32
Ip [MA] 2.66 1.06 0.94 0.85
< β > [%] 2.97 0.01 0.67 2.05

Fig. 1: (a) Normalized pressure profiles, and (b) q-profiles of the four test equilibria as function
of the square root of the normalized toroidal flux, s.
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In Table 1 physical properties of the considered equilibria are listed. There, A names the aspect
ratio. Ra, Za, pa and Ba are R- and Z-coordinates, pressure and magnetic field strength at
the magnetic axis. Ip names the toroidal plasma current, and < β > is the volume averaged
plasma-β. The corresponding pressure and q-profiles are shown in Fig. 1.

Assuming a plasma equilibrium solution with smooth and nested flux surfaces, the eigenvalue
problem of the CASTOR3D code is formulated in a very general three-dimensional form using
non-orthogonal flux coordinates (s, v, u). Here, the radial coordinate s =

√
Φ/
√

Φmax is de-
fined as square root of the normalized toroidal flux (Φmax is the total toroidal flux). The choice
of the toroidal and poloidal, angle-like coordinates v and u is not fixed. However, they have to
fulfil the following relations:

R(s, v, u) =

kmax,lmax∑
k=0,l=−lmax

r̂ck,l(s) cos(2π(ku+ lv)) + r̂sk,l(s) sin(2π(ku+ lv)),

ϕ(s, v, u) = 2πv + 2π

kmax,lmax∑
k=0,l=−lmax

v̂ck,l(s) cos(2π(ku+ lv)) + v̂sk,l(s) sin(2π(ku+ lv)), (1)

Z(s, v, u) =

kmax,lmax∑
k=0,l=−lmax

ẑck,l(s) cos(2π(ku+ lv)) + ẑsk,l(s) sin(2π(ku+ lv)),

with the cylindrical coordinates (R,ϕ, Z) describing the flux surfaces labeled by s with 0 ≤
s ≤ 1. The toroidal and poloidal coordinates are defined in the ranges 0 ≤ v < 1 and 0 ≤ u <

1. {r̂ckl(s), r̂skl(s), v̂ckl(s), v̂skl(s), ẑckl(s), ẑskl(s)} are the Fourier coefficients representing the flux
surfaces, with 0 ≤ k ≤ kmax and −lmax ≤ l ≤ lmax being the poloidal and toroidal harmonics,
respectively.

This general description of the flux surfaces is the basis for the formulation of the eigenvalue
problem which also holds for 3D plasma equilibria. Here we use three different kinds of flux
coordinates (see also Appendix 1): (i) flux coordinates used by the NEMEC equilibrium code
[20, 21], (ii) straight field line coordinates used in the original CASTOR code [16, 17], which
only hold for axisymmetric equilibria, and (iii) the so-called Boozer coordinates [14]. In Fig. 2
flux surfaces, and poloidal coordinate lines of the three coordinate systems are plotted for the
four axisymmetric test equilibria. Due to the proximity of the chosen plasma boundary to the
separatrix and the high q-value there, the poloidal coordinate lines of the straight field line
and the Boozer coordinates become almost parallel to the radial ones in the boundary region
of the AUG-T2 test equilibrium. Such a behaviour implies great numerical problems in the
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computation of the metric elements. This can be avoided by using the NEMEC coordinates.
These coordinates behave well everywhere, as also shown in Fig. 2.

AUG-T1 ellipse

AUG-T2 circle

Fig. 2: Poloidal cross-sections of the ax-
isymmetric test equilibria showing flux sur-
faces (black) and poloidal coordinate lines:
NEMEC (blue), Boozer (red), and axisym.
straight field line coordinates (green dashed).

All equilibria discussed above are axisymmetric equilibria. However, using the NEMEC code
in its 3D mode (allowing for toroidal harmonics with n 6= 0), the circular equilibrium develops
a helical core as will be described in Section 3.3. Furthermore, applying a 3D vacuum field

6



by taking the field of MP coils into account, a 3D equilibrium solution is obtained for test
equilibrium AUG-T2 (see Sect.3.4).

3 Plasma part of the CASTOR3D code

3.1 Resistive, single-fluid MHD equations

The linear, resistive, single-fluid MHD equations read

λρ = −~v ·∇ρ0 − ρ0∇·~v, (2)

λρ0~v = −∇(ρ0T + ρT0)/m+ ((∇× ~B0)× ~B + (∇× ~B)× ~B0)/µ0, (3)

λT = −~v ·∇T0 − (Γ− 1)T0∇·~v, (4)

λ~B = ∇×(~v× ~B0 − η∇× ~B/µ0), (5)

with the time dependence of the perturbed quantities taken to be∼ eλt, and λ = γ+iω. The real
part of λ denotes the growth rate, γ, while ω describes the oscillation frequency of the mode.
The quantities ρ0, T0, and ~B0 are density, temperature, and magnetic field of the unperturbed
equilibrium. The corresponding perturbed quantities are represented with the same symbols,
but without zero. The compressibility of the plasma is described by the coefficient Γ, with
Γ = 5/3 used here. The quantities m, µ0, and η indicate particle mass, vacuum permeability,
and plasma resistivity.

3.2 Weak formulation of the MHD equations

In case of the original CASTOR code the formulation of the eigenvalue problem has already
been described in detail in [16, 17]. Here, only the most important steps are summarized in-
cluding the extensions and modifications necessary for the 3D formulation in general flux coor-
dinates.

The perturbed vector potential ~A is introduced by

~B = ∇× ~A and ~E = −λ ~A, (6)
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where the scalar potential is set equal to zero because of the gauge invariance. This yields for
(3) and (5)

λρ0~v = −∇(ρ0T + ρT0)/m+ ((∇× ~B0)×(∇× ~A) + (∇×(∇× ~A))× ~B0)/µ0 (7)

and

λ ~A = ~v× ~B0 −
η

µ0

∇×(∇× ~A). (8)

Analogous to the original CASTOR code a complex ansatz is made for the perturbed quantities

ρ =
1

s
ρ̂, T =

1

s
T̂ , ~A = −iÂs∇s+ Âv∇v + Âu∇u,

~v = vs~r,s +vv~r,v +vu~v,u =
R2

√
g
v̂s~r,s +

R2

iιf̂
v̂v ~B0 +

R2

i
√
g
v̂u~r,u . (9)

Here
√
g = ~r,s ·(~r,v×~r,u ) is the Jacobian, f̂ = ∂Φ/∂s the derivative of the toroidal flux Φ,

and ι the rotational transform. The equilibrium magnetic field, ~B0, is used in its covariant
representation

~B0 = Bu~r,u +Bv~r,v . (10)

The eight variables ρ̂, v̂s, v̂u, v̂v, T̂ , Âs, Âu and Âv are collected in the state vector

~w = (ρ̂, v̂s, v̂u, v̂v, T̂ , Âs, Âu, Âv). (11)

For its components, ŵf̄ , a general ansatz is made:

ŵf̄ (s, v, u) =
∑
m̄,n̄,j̄,q̄

as,m̄,n̄
f̄ ,j̄,q̄

hj̄
f̄ ,q̄

sin(2π(m̄u+ n̄v)) + ac,m̄,n̄
f̄ ,j̄,q̄

hj̄
f̄ ,q̄

cos(2π(m̄u+ n̄v)). (12)

It is a combination of Fourier series in poloidal and toroidal direction, and finite elements in
radial direction. Using the e-function representation of the sine and cosine functions, the CAS-
TOR compatible form

ŵf̄ (s, u, v) =
∑
m̄,n̄,j̄,q̄

cm̄,n̄
f̄ ,j̄,q̄

hj̄
f̄ ,q̄
e2πi(m̄u+n̄v) + c̄m̄,n̄

f̄ ,j̄,q̄
hj̄
f̄ ,q̄
e−2πi(m̄u+n̄v) (13)

is obtained, with cm̄,n̄
f̄ ,j̄,q̄

and c̄m̄,n̄
f̄ ,j̄,q̄

being the resulting combinations of as,m̄,n̄
f̄ ,j̄,q̄

and ac,m̄,n̄
f̄ ,j̄,q̄

.

In order to build the weak form, the following test functions

ts,m,nf,j,q (s, v, u) = t̂fh
j
f,q sin(2π(mu+ nv)) = t̂fh

j
f,q

1

2i

(
e2πi(mu+nv) − e−2πi(mu+nv)

)
(14)
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tc,m,nf,j,q (s, v, u) = t̂fh
j
f,q cos(2π(mu+ nv)) = t̂fh

j
f,q

1

2

(
e2πi(mu+nv) + e−2πi(mu+nv)

)
(15)

are used with the t̂f chosen as in the original CASTOR code:

t̂ρ̂ =
1

s
, t̂T̂ =

1

s
, t̂Âs

= i∇s, t̂Âu
= ∇u, t̂Âv

= ∇v

t̂v̂s =
R2

√
g
~r,s , t̂v̂u =

iR2

√
g
~r,u , t̂v̂v =

iR2

√
g
~r,u−

iJ

4π2ιf̂
~r,v (16)

with J being the poloidal current. In (13,14) and (15) f and f̄ lable the eight variables,
m,n, m̄, n̄ the poloidal and toroidal Fourier harmonics, and j, j̄ the radial grid points. The
interpolating functions hjf,q and hj̄

f̄ ,q̄
are either quadratic (f, f̄ = ρ̂, v̂u, v̂v, T̂ , Âs) or cubic

(f, f̄ = v̂s, Âu, Âv) Hermite polynomials, which in the following are named hjq, h
j̄
q̄ (quadratic)

and Hj
q , H

j̄
q̄ (cubic), respectively. Furthermore, q, q̄ = 1, 2 label the two different quadratic and

cubic Hermite polynomials at each radial grid point. For the definition of these polynomials,
e.g. see [17].

Inserting the ansatz for the perturbed quantities (9,13) into the MHD equations (2,7,4,8), mul-
tiplying them from the left hand side with the appropriate test functions (14,15), expressing the
equilibrium quantities in poloidal and toroidal direction by Fourier series, and, finally, integrat-
ing the resulting equations over the plasma volume, the non-hermitian eigenvalue problem

λB~x = A~x (17)

with the eigenvector ~x = ({cm̄,n̄
f̄ ,j̄,q̄
}, {c̄m̄,n̄

f̄ ,j̄,q̄
}) is obtained.

Taking into account that the eigenvalues of two orthogonal solutions are not degenerated in
case of asymmetric problems, this eigenvalue problem is twice as large as the axismmetric
eigenvalue problem solved by the original CASTOR code. In case of 3D, asymmetric equilibria
and/or in presence of asymmetric wall and coil structures, usually two instead of one eigenvalue
are obtained for a mode [15, 5]. However, in case of axisymmetric or stellartor-symmetric con-
figurations, the size of the eigenvalue problem can be reduced to the one solved in the original
CASTOR code with ~x = ({cm̄,n̄

f̄ ,j̄,q̄
}). Furthermore, the solution of this smaller eigenvalue prob-

lem is a good approximation as long as the difference beween the two eigenvalues resulting
from a non-symmetric, 3D geometry is smaller or in the range of the achieved numerical ac-
curacy. All computations presented in Sections 3 and 4 have been performed by solving the
smaller eigenvalue problem, because either axisymmetry or stellartor-symmetry is fulfiled, or
only weakly violated.
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The boundary terms arising in the weak form are presented in Section 4. In the next two sub-
sections, we will concentrate on fixed-boundary modes. Then the essential boundary conditions
read at the magnetic axis

vs(s = 0) = 0, Au(s = 0) = 0, Av(s = 0) = 0, (18)

and at a perfectly conducting wall at the plasma boundary

vs(s = 1) = 0, Au(s = 1) = 0, Av(s = 1) = 0. (19)

3.3 Fixed-boundary, ideal modes

At first, we study ideal modes of axisymmetric equilibria. We start with a simple equilibrium
with circular cross-section (equilibrium CIRCLE, see Table1). Due to its high β-value, flat
q-profile, and high pressure gradient around q = 1, the equilibrium is unstable with respect
to n ≥ 1 ideal kink modes. Here, we present computations up to n = 7. The computations
have been performed using various formulations and several coordinate systems: the general
3D coordinate formulation for NEMEC coordinates, Boozer coordinates and 2D straight field
coordinates, as well as the original formulation of the CASTOR code based on 2D straight
field coordinates. Additionally, the results are benchmarked with the CAS3DN code. This
code is a slightly modified version of the CAS3D code [11] in which a non-equidistant radial
grid has been implemented. As shown in Fig. 3a, the growth rates of the internal kink modes
computed with different coordinates and codes agree very well within 0.5%. Note, here and in
the following the corresponding CASTOR3D results obtained for NEMEC coordinates serve as
reference points for the deviations given in per cent. In order to reach such a high accuracy,
sufficient poloidal harmonics have to be taken into account. We have used 11 - 15 poloidal
harmonics in case of NEMEC coordinates, and 17 - 23 harmonics otherwise. The number of
poloidal harmonics increases with growing toroidal harmonic, n.

The number of contributing poloidal harmonics increases also with the complexity of the shap-
ing of the poloidal plasma cross-section as illustrated in Fig. 3b. There, the growth rates of the
n = 3 and n = 5 internal kink modes of the AUG-type equilibrium AUG-T2 are plotted as
function of the total number of used poloidal harmonics, Nm. While the CASTOR3D results
using NEMEC coordinates are already pretty well converged using less than 20 poloidal har-
monics, at least 30 (n = 3 mode) or 40 (n = 5 mode) harmonics are needed if straight field
line coordinates are used. Here, we consider growth rates as converged if they do not change
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more than 1% by further increasing the number of used harmonics. The results obtained with
different coordinates and codes agree within 0.25% and 3.5%, respectively. The largest devia-
tions occur between CASTOR3D and CAS3DN results, particulary for the n = 5 mode. Due
to the higher n, which implies a smaller mode width, and the lower eigenvalue, the numerical
differences between both codes become more important. Especially the choice of the radial
coordinate (CASTOR3D: s =

√
S, CAS3DN: S) plays a role.

Fig. 3: (a) Circular equilibrium: Growth rates of internal kink modes as function of the toroidal
harmonic n. (b) AUG-T2 equilibrium: Growth rates of n = 3 and n = 5 internal kink modes as
function of the total number of poloidal harmonics,Nm, which are taken into account. The black
lines indicate the results obtained with the CASTOR3D code using NEMEC coordinates, while
the red squares and lines, respectively, mark the CAS3DN results. The green stars denote the
2D straight field line coordinates using the original CASTOR formulation, while blue diamonds
and violet plus signs show the results obtained with the general CASTOR3D formulation using
2D straight field line coordinates and Boozer coordinates, respectively.

Doing a 3D NEMEC equilibrium calculation with axisymmetric plasma boundary and initial
m = 1, n = 1 displacement of the magnetic axis for the circular equilibrium, a 3D equilibrium
with helical core develops. The initial displacement of the magnetic axis numerically initiates
the search for a non-axisymmetric solution, but has no influence on the final core size. As
described in detail in [10], after returning to an almost axisymmetric solution a helical core
develops, that is, the corrugation of the flux surfaces grows with increasing number of iterations
until saturation. However, each of these iteration steps yields a quasi-equilibrium state with
acceptably good numerical accuracy. Therefore, a set of equilibria which differ in the size of
the helical deformation is available for the following stability studies.

Figure 4 shows the helical plasma core at the toroidal angles ϕ = 0o (black) and ϕ = 180o (red)
after 120 000 iterations. The crosses mark the positions of the magnetic axis, while the green
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dot represents the axis position of the axisymmetric equilibrium. Defining the radial shift, ∆R,
of the magnetic axis at ϕ = 0o with respect to the axis position of the axisymmetric equilibrium
as measure of the helical deformation, the plotted helical core corresponds to ∆R = 3.16 cm.

Fig. 4: Poloidal cross-sections of the helical
plasma core after 120 000 iterations at ϕ =
0o (black) and ϕ = 180o (red). The crosses
mark the corresponding axis positions, while
the green dot indicates the axis position of
the axisymmetric equilibrium.

Fig. 5: Eigenfunctions: (a) Real part of the Fourier spectrum of the radial velocity perturbation,
v̂s, using NEMEC coordinates. (b) Corresponding Fourier spectrum, i.e. the radial displace-
ment, ξ̂sm,m, computed with the CAS3DN code using Boozer coordinates. Fourier coefficients
of the same toroidal harmonic, n, are plotted with the same colour. The largest contributions are
marked by their poloidal and toroidal harmonics, m/n.

Since the helical deformation leads to a coupling of the toroidal harmonics, stability studies
performed with the CAS3DN and the CASTOR3D codes yield several unstable modes. In
Fig. 5, Fourier spectra of eigenfunctions belonging to the unstable mode with a dominant n = 3

character are presented for the equilibrium with ∆R = 3.16 cm. Figure 5a shows the Fourier
spectrum obtained with the CASTOR3D code using NEMEC coordinates, while Fig. 5b shows
the spectrum computed with the CAS3DN code using Boozer coordinates. Since NEMEC co-
ordinates are no straight field line coordinates, the dominant m = 3 character of the mode
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is not as obvious from the Fourier spectrum as in case of Boozer coordinates. Therefore, we
reconstructed the velocity perturbation from the Fourier spectrum of the CASTOR3D eigen-
functions. As shown in Fig. 6, the mode shows a clear m = 3 structure. Furthermore, the
eigenvalues computed with both codes agree very well within 1% (see Fig. 5).

Fig. 6 Mode structure of the internal kink
mode with γ = 15923 1/s. This mode shows
a m = 3 structure. The vectors characteriz-
ing the velocity perturbation in the R − Z-
plane are computed from the Fourier spec-
tra of the corresponding eigenfunctions ob-
tained with the CASTOR3D code using NE-
MEC coordinates.

Fig. 7: Growth rates of internal kink modes as function of the helical deformation of the plasma
core, ∆R. nmarks the main toroidal character of the mode. The CASTOR3D results are marked
by black dashed lines/bullets (NEMEC coordinates) and blue dashed lines/squares (Boozer co-
ordinates), while the CAS3DN results are given by red dashed lines/stars.
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As already mentioned, the helical deformation increases with the number of iterations. In Fig. 7
the growth rates of internal kink modes with dominant n=2,3 and 4 character are plotted as
function of the helical deformation of the core, ∆R. The growth rates, which slightly decrease
with increasing ∆R, are computed with the CASTOR3D code using NEMEC and Boozer coor-
dinates, respectively, and with the CAS3DN code. For ∆R ≤ 3.16 cm the results agree within
.1%, and even for ∆R ≤ 5.6 cm their deviation is still smaller than 4%. However, with increas-
ing helical deformation the number of contributing poloidal and toroidal harmonics increases,
while the numerical accuracy declines. In case of ∆R ≤ 5.6 cm already 95 (CASTOR3D, NE-
MEC coordinates) and 147 (CASTOR3D, Boozer coordinates, and CAS3DN) harmonics have
been taken into account.

3.4 Fixed-boundary, resistive modes

The axisymmetric test equilibrium AUG-T1, which has a reversed q-profile (see Fig. 1b), is
unstable with respect to a (2,1) Double Tearing Mode (DTM). This test equilibrium is used
to benchmark the various coordinate systems implemented in the CASTOR3D code in case of
resistive modes.

Fig. 8: Benchmark between the CASTOR3D formulation in general 3D coordinates (NEMEC
coordinates (black circles/line), Boozer coordinates (blue squares/line)) and its original for-
muluation in 2D straight field coordinates (green stars/line). (a) shows the dependence of the
growth rate on the total number of poloidal Fourier harmonics, and (b) its dependence on the
plasma resistivity.
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Choosing a constant plasma resistivity, η = 1 · 10−7 Ωm, we investigate the dependence of the
DTM growth rate on the total number of poloidal harmonics taken into account. In order to
obtain a converged result, again less poloidal harmonics are needed in case of NEMEC coordi-
nates (Nm = 9) than in case of straight field line coordinates (Nm = 21), as shown in Fig. 8a.
The converged results agree very well for all cases. They differ by less than 0.6%. Further-
more, the growth rates computed with NEMEC coordinates and straight field line coordinates,
respectively, exhibit the same dependence on the plasma resistivity, as shown in Fig. 8b. In all
cases the DTM stabilizes for η . 2.5 · 10−9 Ωm, and the growth rates follow the typical single
tearing mode scaling (γ ∝ η3/5) in the range of 5 · 10−8 < η < 1 · 10−5 Ωm.

Fig. 9: Fourier spectra of the eigenfunctions of the real part of the radial velocity perturbation
in (a) straight field line coordinates (original 2D formulation), and (b) NEMEC coordinates.

The Fourier spectra of the eigenfunctions of the real part of the radial velocity perturbation
are shown in Fig.9 using straight field line coordinates in the original 2D formulation, and
NEMEC coordinates. In both cases the Fourier harmonics change sign at rational surfaces as
expected. However, using NEMEC coordinates, the harmonics change sign at every rational
surface, while in case of straight field line coordinates, an m,n-harmonic only changes sign at
the corresponding q = m/n surface.

Finally, we study the effect of plasma resistivity on internal modes in case of a 3D, non-
symmetric ASDEX Upgrade-type equilibrium. Turning on an n = 2 magnetic perturbation
field, the AUG-T2 equilibrium becomes three-dimensional. Figure 10 shows the poloidal cross-
sections of the axisymmetric equilibrium, which is unstable with respect to n = 3 and n = 5

internal kink modes (see Sect. 3.3, Fig. 3b), and the 3D equilibrium at ϕ = 0o. Again, the 3D
plasma geometry leads to a coupling of the toroidal harmonics. Since the corrugation of the flux
surfaces is only of the order of 1 cm, merely 5 (NEMEC coordinates) to 7 toroidal harmonics
(Boozer coordinates) contribute to the unstable ideal internal kink mode which is dominated
by n = 3. The eigenvalues obtained with CAS3DN, CASTOR3D (Boozer coordinates), and
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CASTOR3D (NEMEC coordinates) amount to 56023, 56355, and 57460 1/s, respectively. The
CAS3DN code yields two eigenvalues (55869 1/s and 56023 1/s) which belong to the two
orthogonal eigenfunctions. The eigenvalues of these two eigenfunctions split because the con-
sidered 3D equilibrium is not stellarator-symmetric. However, the difference between the two
eigenvalues is too small to be found with the CASTOR3D code, which presently uses the in-
verse vector iteration method [24] for the solution of the eigenvalue problem. Therefore, we
neglected this effect and solved the smaller eigenvalue problem as described in Sect. 3.2. It
should be noted that, in contrast to the ideal CAS3DN code, the CASTOR3D code solves a
non-hermitian eigenvalue problem.

Fig. 10: Poloidal cross-section of the axi-
symmetric equilibrium AUG-T2 (black), and
the 3D equilibrium at ϕ = 0o (red). The lat-
ter is the result of an n=2 external perturba-
tion field produced by the 16 MP coils im-
plemented in ASDEX Upgrade [25].

Fig. 11: Growth rate as function of the
plasma resistivity for the n=3 mode of the
axisymmetric AUG-T2 equilibrium (green
line/stars) and the corresponding mode of the
3D equilibrium (black line/circles).

Using NEMEC coordinates, the growth rate of the n = 3 internal mode is determined as func-
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tion of the plasma resistivity for the axisymmetric equilibrium, and analogous for the 3D equi-
librium. Figure 11 shows a comparison of both cases. The growth rates possess the same
dependence on η. However, the 3D equilibrium is more unstable due to the coupling of the
toroidal harmonics. As shown in Fig. 12, it is mainly the coupling of n = 3 and n = 5 which
makes the 3D equilibrium more unstable. Comparing the Fourier spectra obtained for the ideal
plasma and for η = 8 · 10−7 Ωm, it seems that the contributions of the n = 5 harmonic slightly
increase with the plasma resistivity.

Fig. 12: Real (solid lines) and imaginary parts (dashed lines) of the eigenfunction Fourier
spectra of the radial velocity perturbation. (a) ideal, and (b) resistive plasma with η = 8 ·
10−7 Ωm.

4 Vacuum part of the CASTOR3D code

Free-boundary stability studies performed with the original CASTOR code are restricted to
axisymmetric plasma surrounded by a vacuum domain and a closed, ideally conducting, ax-
isymmetric wall located at some distance from the plasma [16]. Perturbing the vacuum with
unit field perturbations at the plasma boundary, the vacuum response is determined by solving
the weak form of the Laplace equation for each of these perturbations. Additionally to the solu-
tion of the Laplace equation, the variational method used in the STARWALL code [5] has been
implemented in the CASTOR3D code. In contrast to the solution of the Laplace equation, this
method also allows the computation of the vacuum response in case of no wall, and in presence
of ideal coils and multiply-connected, ideal wall structures.
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4.1 Boundary conditions

We consider only ideal equilibria without surface currents, i.e. the equilibrium field is contin-
uous across the boundary, ~B0 = ~Bvac

0 , and the pressure p0 goes to zero (see Fig. 1a). Then,
in case of ideal stability studies (η = 0) the boundary conditions at the interface of an ideally
conducting plasma and the surrounding vacuum are:

~B · ~np = ~Bvac~np, (20)

p+ ~B0 · ~B = ~Bvac
0 · ~Bvac, (21)

where ~np is the normal vector of the unperturbed plasma boundary, and p = ρ0T + T0ρ.

In case of resistive stability studies, surface currents are no longer allowed in the plasma pertur-
bation. This leads to an additional condition

~np× ~B = ~np× ~Bvac. (22)

That is, also the tangential perturbations of the magnetic field, bu and bv, are continuous

~B0 · ~B = ~Bvac
0 · ~Bvac, (23)

and (21) reduces to p = 0 with the latter being satisfied via the chosen equilibria.

At the ideal wall the boundary condition simply reads

~nw · ~Bvac = 0, (24)

with ~nw being the normal vector of the wall.

The CASTOR code [16, 17] makes use of a formulation where both the ideal and the resistive
boundary conditions at the plasma-vacuum interface are implemented as natural boundary con-
ditions, i.e. they are automatically satisfied when solving the weak form. In the CASTOR3D
code this formulation is extended to 3D geometry and general flux coordinates.

The second-order derivatives in the radial coordinate arising in (7) and (8) can, in the weak
form, be reduced to first-order derivatives by partial integration. Making use of the bound-
ary conditions defined above, the weak formulation of the momentum equation (7) yields the
boundary terms

W s
v̂s = − 1

µ0

∫ 1

0

∫ 1

0

dudvHq sin(2π(mu+ nv))R2 ~B0 · ~Bvac)|s=1, (25)
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W c
v̂s = − 1

µ0

∫ 1

0

∫ 1

0

dudvHq cos(2π(mu+ nv))R2 ~B0 · ~Bvac)|s=1. (26)

The weak formulation of Ohm’s law (8) leads to

W s
Âu

=
1

µ0

∫ 1

0

dv

∫ 1

0

du Hq sin(2π(mu+ nv))(−η)bvacv |s=1, (27)

W c
Âu

=
1

µ0

∫ 1

0

dv

∫ 1

0

du Hq cos(2π(mu+ nv))(−η)bvacv |s=1, (28)

W s
Âv

=
1

µ0

∫ 1

0

dv

∫ 1

0

du Hq sin(2πi(mu+ nv))ηbvacu |s=1, (29)

W c
Âv

=
1

µ0

∫ 1

0

dv

∫ 1

0

du Hq cos(2πi(mu+ nv))ηbvacu |s=1. (30)

The cubic Hermite polynomials are H1(s = 1) = 1 and H2(s = 1) = 0, that is, only terms with
index q = 1 do not vanish.

If the vacuum field is perturbed by unit perturbations at the plasma boundary, the vacuum mag-
netic field perturbation ~Bvac = bvacs ∇s + bvacu ∇u + bvacv ∇v = ∇× ~Avac can be determined as
function of these unit perturbations, in which the boundary condition (20) holds for each unit
perturbation. In the following two subsections we will briefly describe the two methods that are
implemented in the CASTOR3D code for determing the vacuum response.

4.2 Laplace equation

In the vacuum region between plasma and ideal wall, the perturbation of the magnetic field
fulfils the relations ∇× ~Bvac = 0 and ∇ · ~Bvac = 0. Using the first relation, it is possible to
introduce a scalar magnetic potential ΦM with ~Bvac = ∇ΦM . Then ∇ · ~Bvac = 0 yields the
Laplace equation

∆ΦM = 0. (31)

Multiplying this equation with a test function tk, and integrating over the vacuum region be-
tween plasma boundary and ideal wall gives its weak form∫

Vvac

∇tk∆ΦMdV =
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∫
Sp

tk∇ΦM · ~npdS +

∫
Sw

tk∇ΦM · ~npdS −
∫
Vvac

∇tk · ∇ΦMdV = 0. (32)

The surface integrals are performed over the plasma boundary, Sp, and the ideal wall, Sw.
Because of the boundary conditions (20) and (24) we obtain∫

Vvac

∇tk · ∇ΦMdV =

∫
Sp

tk( ~B
vac · ~np)dS =

∫
Sp

tk
√
gbsdudv. (33)

For ΦM and
√
gbs Fourier ansatz are made

ΦM =
∑

m̄v ,n̄v ,j̄v ,q̄

φs,m̄v ,n̄v

j̄v ,q̄
H j̄v
q̄ sin(2π(m̄vu+ n̄vv)) + φc,m̄v ,n̄v

j̄v ,q̄
H j̄v
q̄ cos(2π(m̄vu+ n̄vv)), (34)

√
gbs =

∑
m̄v ,n̄v ,j̄v ,q̄

ds,m̄v ,n̄v

j̄v ,q̄
H j̄v
q̄ sin(2π(m̄vu+ n̄vv)) + dc,m̄v ,n̄v

j̄v ,q̄
H j̄v
q̄ cos(2π(m̄vu+ n̄vv)). (35)

As test functions, tk, we choose

ts,mv ,nv

ΦM ,jv ,q
= Hjv

q sin(2π(mvu+ nvv)), tc,mv ,nv

ΦM ,jv ,q
= Hjv

q cos(2π(mvu+ nvv)). (36)

Inserting (34) and (35) into (33), and multiplying the resulting equation with the test functions
(36) yields a set of linear equations. It reads in matrix form

E~c = ~d (37)

with ~c = ({φs,m̄v ,n̄v

j̄v ,q̄
}, {φc,m̄v ,n̄v

j̄v ,q̄
}) and ~d = ({ds,m̄v ,n̄v

j̄v ,q̄
}, {dc,m̄v ,n̄v

j̄v ,q̄
}).

This linear equation system is solved separately for every unit perturbation

~dm̄,n̄ = (..., 1, ...). (38)

The latter is defined by 1 at position m̄, n̄ (sine or cosine component), and 0 otherwise. The
solutions yield the magnetic potential ΦM and, thereby, the perturbed magnetic field, ~Bvac =

∇ΦM , as functions of the unit perturbations.

In the CASTOR3D code this method has also been implemented for NEMEC coordinates, but
up to now for axisymmetric geometry only.
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4.3 Variational method

The STARWALL code [5] uses a variational method. For ideal wall and coil structures, the
latter are considered as passive conductors, the Lagrangian reads

Lideal =
µ0

8π

2,2∑
i,i′=1

∫
Si

dfi

∫
Si′

dfi′
~Ki · ~Ki′

|~ri − ~ri′ |
−
∫
Sp

dfp ~Kp · ~Avac (39)

+
µ0

8π

Nc,Nc∑
nc,n′

c=1

IncIn′
c

∫
Snc

dfnc

∫
Sn′

c

dfn′
c

~knc · ~kn′
c

|~rnc − ~rn′
c
|

+
µ0

4π

Nc,2∑
nc,i=1

Inc

∫
Snc

dfnc

∫
Si

dfi
~Ki · ~knc

|~ri − ~rnc |
.

Here, the indices i, i′ = 1, 2 mark the quantities related to the plasma boundary (1=̂p) and the
wall (2=̂w), respectively, while index nc = 1, ..., Nc numbers the coils. ~knc is the normal-
ized surface current density, and Inc denotes the magnitude of the coil current of coil nc. The
divergence-free surface current densities

~Ki = ~ni×∇Φi (40)

generate the magentic field perturbation in the vacuum domain, where Φi are the current poten-
tials. Inserting (40) into the boundary term of the Lagrangian (39), making a partial integration,
inserting ~Bvac = ∇×Avac and ~np =

√
g∇s/|~r,v×~r,u |, and using the boundary condition (20),

leads to

−
∫
Sp

dfp ~Kp · ~Avac = −
∫
Sp

dfp(~np×∇Φp) · ~Avac =

∫
Sp

dudvΦp|~r,v×~r,u |(~np · ~Bvac)

=

∫
Sp

dudvΦp√g∇s · ~B =

∫
Sp

dudvΦp√gbs. (41)

For
√
gbs we made again the ansatz (35). Fourier ansatz are also made for the current potential

of the plasma boundary and the current potential of a closed wall with smooth geometry

Φi(u, v) =
∑
mi,n̄i

Φ̂i,s
mi,ni

sin(2π(miu+ niv)) + Φ̂i,c
mi,ni

cos(2π(miu+ niv)) (42)

where i = p, w. Coils and walls with complex, multiply-connected structure are discretized us-
ing triangles. Then the surface current density, ~K∆, is assumed to be constant on a triangle, and
is defined by the values of the current potential at its vertices (for details see [5] and Appendix
2). However, here we consider only closed walls in Fourier representation, and coils discretized
into triangles.
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Inserting (40,41) and the ansatz (35,42) into the Lagrangian (39), and making the variation with
respect to Φ̂i,s

m̄,n̄, Φ̂
i,c
m̄,n̄ and Inc , the following linear equation system is obtained: Mpp Mpw Mpc

Mwp Mww Mwc

Mcp Mcw Mcc

 ·
 ~xp

~xw
~xc

 =

 Rpd

0
0

 · ~d. (43)

The matrices Mpp, Mpw, Mww result from the first, Mcc from the third, Mpc, Mwc from
the forth, and Rpd from the boundary term of the Lagrangian. The symbolic vectors ~xp =

({φ̂p,smp,np
}, {φ̂p,cmp,np

}), ~xw = ({φ̂w,sm̄w,nw
}, {φ̂w,cmw,nw

}), and ~xc = ({Inc}) represent the Fourier
coefficients of Φp, Φw, and the coil currents. Analogous to the solution of the Laplace equa-
tion, this linear equation system is solved for every unit perturbation (38) yielding the current
potentials and the coil currents, and thereby the vacuum magnetic field perturbation

~Bvac = ~Bvac
p + ~Bvac

w +
∑
nc

~Bvac
nc

=
µ0

4π

∫
Sp

dfp ~Kp×
(~r − ~rp)
|~r − ~rp|3

+
µ0

4π

∫
Sp

dfw ~Kw×
(~r − ~rw)

|~r − ~rw|3

+
µ0

4π

Nc∑
nc

Inc

∫
Snc

dfnc
~knc×

(~r − ~rnc)

|~r − ~rnc |3
(44)

as function of the unit perturbations.

4.4 Free-boundary DTM in presence of an ideal wall

The two solution methods discussed above are benchmarked for a free-boundary DTM in pres-
ence of an ideal, closed wall. The latter being shaped as the plasma boundary. Again the com-
putations are performed for the AUG-T1 test equilibrium using a constant plasma resisitivity
with η = 1 · 10−7Ωm. Expanding the wall distance from almost zero to rw ≥ 0.6 m, the growth
rate increases from the fixed-boundary value to the no wall limit. Here and in the following the
distance between plasma boundary and wall, rw, is measured at the low field side at the height
of the magnetic axis, Za. Note that the configuration without wall can only be handled with the
variational method, while the solution of the Laplace equation always requires a limiting wall.
Using NEMEC coordinates and 2D straight field line coordinates, respectively, the growth rates
obtained with the two solution methods excellently agree for rw > 2 cm. The deviations of the
results caused by the two solution methods are even smaller than the differences resulting from
the general 3D and the original 2D straight field line formulation.
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Fig. 14: Growth rate of the DTM (AUG-
T1 equilibrium, plasma resistivity η = 1 ·
10−7Ωm) as function of the wall distance,
rw. Results obtained with the two solution
methods (lines: variational method, squares:
solution of the Laplace equation) are com-
pared using NEMEC coordinates (black) and
2D straight field line coordinates (green), re-
spectively.

5 Merging of plasma and vacuum parts

5.1 Formulation of the extended eigenvalue problem

In the presence of resistive wall and/or coil sturctures a further boundary condition has to be
defined. Assuming an exponential time dependence, eλt, and using the thin wall approximation,
the boundary condition for the perturbed vector potential [5] reads

~nw× ~Avac = − 1

σwdwλ
~nw× ~Kw (45)

where σw and dw are the specific wall resistivity and wall width, respectively. The dependency
of this boundary condition on the eigenvalue λ suggests the formulation of an extended eigen-
value problem.

The Lagrangian including resistive wall and coil structures is defined by

L = Lideal +
1

2λσwdw

∫
Sw

dfw ~Kw · ~Kw +
1

2λ

Nc∑
nc=1

RncI
2
nc

∫
Snc

dfnc
~k2
nc

(46)

with Rnc being the resistance of coil nc. Using the boundary condition for the vector potential
at the plasma-vacuum interface

~np× ~Avac = −(~np · ~ξ) ~B0, (47)
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the boundary term of Lideal (39) is expressed by∫
Sp

dfp ~Kp · ~Avac = −
∫
Sp

dfp(~np · ~ξ)~np · ( ~Kp× ~B0) = −1

λ

∫
Sp

dfp(~np · ~v)~np · ( ~Kp× ~B0). (48)

Here, we used the relation between displacement vector ~ξ, velocity perturbation ~v, and eigen-
value λ

~ξ =
~v

λ
. (49)

In case of a vertical mode net-toroidal, ITp , I
T
w , and net-poloidal, IPp , I

P
w , currents are flowing on

the plasma boundary and the plasma-facing surface of an ideal, closed wall [19]. The Fourier
ansatz for the current potentials (42) (see Sect. 4.3) does not include these currents, and it
therefore has to be extended to

Φi = ITi u+ IPi v +
∑
mi,ni

φ̂i,smi,ni
sin(2π(miu+ niv)) +

∑
mi,ni

φ̂i,cmi,ni
cos(2π(miu+ niv)). (50)

The variation of the Lagrangian with respect to ITp , I
P
p , Φ̂

p,s
mp,np

,Φp,c
mp,np

, ITw , I
P
w , Φ̂

w,s
mw,nw

, Φ̂w,c
mw,nw

,
and Inc yields the equation system Mpp Mpw Mpc

Mwp Mww Mwc

Mcp Mcw Mcc

 ·
 ~xp

~xw
~xc

 = −1

λ

 Rpd 0pp 0pw 0pc
0ws 0wp Rww 0wc
0cs 0cp 0cw Rcc

 ·


~xd
~xp
~xw
~xc

 (51)

for the vacuum region which has to be closed with equations derived for the plasma. There-
fore, the eigenvalue problem (17) resulting form the MHD equations (2-5) is formulated in the
following way

λ

(
Bll Bld

Bdl Bdd

)(
~xl
~xd

)
=

(
All Ald 0lp 0lw 0lc
Adl Add Rdp Rdw Rdc

)
~xl
~xd
~xp
~xw
~xc

 . (52)

Here, the indices l and d characterize plasma interior and boundary related elements, respec-
tively. The matrices Rdp, Rdw, and Rdc are obtained by inserting the definition of the magnetic
field perturbation (44) into the boundary terms (25-29).

Finally, equations (51) and (52) are combined to the extended eigenvalue problem

λ


Bll Bld 0lp 0lw 0lc
Bdl Bdd 0dp 0dw 0dc
0pl 0pd Mpp Mpw Mpc

0wl 0wd Mwp Mww Mwc

0cl 0cd Mcp Mcw Mcc




~xl
~xd
~xp
~xw
~xc

 =
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All Ald 0lp 0lw 0lc
Adl Add Rdp Rdw Rdc

0pl −Rpd 0pp 0pw 0pc
0wl 0wd 0wp −Rww 0wc
0cl 0cd 0cp 0cw −Rcc




~xl
~xd
~xp
~xw
~xc

 . (53)

This eigenvalue problem includes the plasma and the vacuum region, in which the latter may
also contain resistive wall and coils structures. Because of (i) the formulation of (53) in general
3D flux coordinates, (ii) the possibility of representing wall and coil structures by triangles, and
(iii) the inclusion of physical effects, such as plasma resistivity, plasma flow, and diamagnetic
drift (the implementation of the latter two is in progress) make the CASTOR3D code a very
flexible and powerful numerical tool for linear stability studies of 2D and 3D tokamak equilibria.

5.2 VDEs and resistive walls

The elliptical equilibrium described in Sect. 2 is unstable with respect to a vertical displacment
event. We use this equilibrium surrounded by a vacuum region, a closed, elliptically-shaped
resistive wall and 16 ideally conducting, toroidal field coils to study the growth rate of a VDE
as function of the wall distance. Here, the toroidal field coils allow for the net-poloidal current,
IPw (50), which appears in case of a m = 0, n = 0 harmonic. However, the net-toroidal current,
ITw flowing on an ideal wall, can be neglected, because it does not contribute to the magnetic
field in the region enclosed by this wall. The CASTOR3D results are benchmarked with results
obtained with the CAS3DN and the STARWALL codes. Furthermore, the computations are
performed using two different density profiles. That is, a constant density, and a density profile
corresponding to the square root of the pressure profile of the elliptical equilibrium are used.
Since the density at the magnetic axis is assumed to be the same in both cases, the plasma inertia
is higher in case of the constant density.

First of all, the growth rates obtained without a wall are computed with the CASTOR3D code.
These no-wall limits are marked with red and black horizontal lines in Fig. 15a. As a conse-
quence of the higher inertia, the growth rate is smaller in case of the constant density. Then,
the growth rates as function of the distance of an ideal wall are determined with the CAS3DN
code using the vacuum solution provided by the STARWALL code. In Fig. 15 these results are
marked by the green (density profile) and violet (constant density) solid lines/plus signs. As
expected, the growth rates converge against the corresponding no-wall limit with growing wall
distance. The growth rates exhibit an almost singular decrease, and become independent of the
plasma inertia (see Fig. 15a and 15b) when the wall distance approximates the ideal wall limit,
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that is, the distance when the mode becomes stabilized by the ideal wall. For wall distances
smaller than the ideal wall limit, the STARWALL code is used to determine the growth rate of
the resistive wall mode marked by blue plus signs in Fig. 15. Finally, the CASTOR3D code is
used to compute the growth rate as function of a resistive wall (red and black solid lines/bullets)
over the whole distance range. In case of small wall distances the results agree very well with
the STARWALL results (see Fig. 15c), while for large distances the wall resistivity plays no
role, and the CASTOR3D results approximate the CAS3DN results (see Fig. 15a) obtaind for
an ideal wall. However, in an intermediate range, where plasma inertia and wall resistivity have
to be taken into account simultaneously, only the CASTOR3D code provides a growth rate by
solving the extended eigenvalue problem desribed in the previous section. These results are
shown in detailed in Fig. 15b.

(a) (b)

(c)

Fig. 15: Growth rates of the VDE of the el-
liptical equilibrium as function of the wall
distance rw. Results obtained with the
CAS3DN, STARWALL, and CASTOR3D
code are compared. The meaning of colours
and symbols is the same in the three figures.
(a) shows the whole range from resistive wall
mode up to no wall limit, (b) illustrates espe-
cially the part of the range which can only
be handled with the CASTOR3D code (here
4000 . γ . 400001/s) in case of a resis-
tive wall. (c) shows the resistive wall mode
region.

In case of no wall and a constant density profile, the VDE mode structures shown in Fig. 16
have been obtained with the CASTOR3D code. The two vector plots illustrate the velocity
perturbation for the elliptical equilibrium (Fig. 16a) and the 3D AUG-T2 equilibrium (Fig. 16b).
The mode structure of the elliptical equilibrium represents very well the downward shift of a
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rigid body, as it is expected for such a symmetric equilibrium. The situation is slightly different
in case of the AUG-T2 equilibrium. There is also a shift of the whole plasma. However, the
shift is largest close to the plasma boundary at the low field side, and the vectors do not point
exactly in vertical direction. In both cases, the mode structures reveal a high quality of the
eigenfunctions. The eigenvalues amount to γ = 149197 1/s and γ = 453570 1/s, respectively.
It should also be mentioned that in case of the 3D AUG-T2 equilibrium the torodial coupling
of n = 0 with higher n-harmonics has been neglected. First of all, due to the large growth
rate of the VDE and the small 3D deformation of the plasma, a very weak coupling is expected.
Secondly, the efficiency of the CASTOR3D code has to be further improved (e.g. parallelization
of the code), since the total number of harmonics contributing to such a problem, would largely
exceed the number of harmonics taken into account in case of the fixed-boundary mode in Sect.
3.4.

(a) (b)

Fig. 16: Mode structure of the VDE of (a) the elliptical equilibrium, and (b) the 3D AUG-T2
equilibrium. The vectors characterize the velocity perturbation in the R-Z plane at ϕ = 0o.

6 Summary and outlook

In this paper we presented an overview of the theoretical background and various application
possiblities of the new 3D, resistive, linear stability code CASTOR3D. This code is based on the
combination of the CASTOR 3DW code, and the STARWALL code. Numerous modifications
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and extensions of both code parts led to a synergistic effect. That is, the number of possible
applications of the CASTOR3D code exceeds easily the possibilities of both of them. The code
has a number of significant advantages. It allows: (i) to choose between various kinds of flux
coordinates, (ii) to perform stability studies for 3D, ideal and resistive tokamak equilibria, (iii)
to take simultaneously into account plasma inertia and resistive walls, (iv) to investigate Vertical
Displacement Events, and (v) to deal with coils and multiply-connected wall structures.

The presented benchmark calculations showed an excellent agreement between the CASTOR3D
results and the results obtained with the CAS3DN code, the STARWALL code, and the previous
CASTOR version. The latter is restricted to axisymmetric equilibria and straight field line co-
ordinates. Several of the CASTOR3D computations were performed for NEMEC, Boozer, and
2D straight field line coordinates. All the results obtained using these coordinates agree very
well. Furthermore, they show that an appropriate choice of the coordinates may noticeably re-
duce the number of required poloidal and toroidal harmonics, and, therefore, reduce computing
time and memory. For the presented examples, the NEMEC coordinates are the better choice.

In contrast to straight field line coordinates, the NEMEC coordinates behave well in the bound-
ary region. Therefore, using these coordinates for the stability studies of ELMs and external
kink modes, we expect less numerical problems and a higher accuracy.

The CASTOR3D code still needs extensions, e.g. the implementation of plasma flow, dia-
magnetic drift, etc., and numerical improvements. The latter concern the parallelization of the
code and the use of an efficient, parallelized eigenvalue solver for non-hermitian eigenvalue
problems. A parallel eigenvalue solver of the Scalable Library for Eigenvalue Problem Compu-
tations (SLEPc) [26], is currently being implemented.
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Appendix 1: Flux coordinate systems

Plasma and vacuum part of the CASTOR3D code are formulated for non-orthogonal 3D flux
coordinates, and additionally, the original straight field line formulation is used. The latter holds
only in case of axisymmetric equilibria.

Fig.17: Orientation of the flux coordi-
nates used in the CASTOR3D code.

The CASTOR3D uses the right-handed, non-orthogonal, flux coordinates (s, v, u). The radial
coordinate (0 ≤ s ≤ 1) labels the flux surfaces. It is defined as s =

√
Φ/Φtot with Φ being

the toroidal flux, and Φmax being its maximum value. The toroidal (0 ≤ v < 1) and poloidal
(0 ≤ u < 1) angle-like coordinates can be chosen arbitrarily, as long as the cylindrical coor-
dinates (R,ϕ, Z) and the equilibrium magnetic field, ~B0 = Bu~r,u + Bv~r,v, are continuously
differentiable functions of these coordinates.

Here three types of flux coordinates are used:

(i) NEMEC coordinates

The NEMEC code [20, 21] uses the coordinates (S, ξ, θ) where S is the normalized toroidal flux,
and ξ = ϕ. The poloidal coordinate θ (0 ≤ θ < 2π) is chosen in such a way that the Fourier
representation of the flux surfaces is optimized [23]. The relations between CASTOR3D and
NEMEC coordinates are: s =

√
S, v = ξ/2π, and u = θ/2π.

(ii) Straight field line coordinates for axisymmetric equilibria

The original CASTOR code, which is restricted to axisymmetric equilibria, uses so-called
straight field line coordinates (spol, ϑ, ϕ). Field lines represented in these coordinates appear
to be straight. The CASTOR3D code uses these coordinates with slight modifications. It uses
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the square root of the normalized toroidal flux, s, instead of the square root of the normalized
poloidal flux, spol. Furthermore, it is v = −ϕ/2π, and u = ϑ/2π.

These coordinates are implemented in two ways: (i) The matrix elements are used in the general
3D formulation, but they are computed for an equilibrium given in straight field line representa-
tion. (ii) The special forms of Jacobian and equilibrium field in these coordinates are explicitly
used. Then, the matrix elements have a similar form as for the original CASTOR code [17].

(iii) Straight field line coordinates for 3D equilibria

The so-called Boozer coordinates (S, V, U ) [14], which are used in the CAS3D [11] and STAR-
WALL codes, are magnetic coordinates suitable for 3D equilibria. In this case, the matrix ele-
ments of the general 3D CASTOR3D formulation are calculated for an equilibrium represented
in Boozer coordinates using: s =

√
S, v = V , and u = U .

Appendix 2: Representation of a coil

A coil is represented by an infinitely thin band which is discretized using triangles as shown in
Fig. 18. The vertices of the triangles are located on the boundaries of the coil band. All vertices
of one side are characterized by the same current potential. Usually, one potential is set to zero,
while the other corresponds to the amount of the total current, I , flowing through the coil. Here,
we define ΦA = 0 and ΦB = I .

Fig.18: Schematic representation of a
coil segment.

The postition vector of a triangle is given by

~r = ~r1 + α~r2,1 + β~r3,1 (54)

with α ≥ 0, β ≥ 0, 0 ≤ α + β ≤ 1, ~ri,k = ~ri − ~rk, i, k = 1, 2, 3, and the vertices numbered
anti-clockwise (~r1, ~r2, ~r3). Assuming the surface current density to be constant on a triangle,
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~K∆ is given by

~K∆1 =
ΦA~r2,3 + ΦA~r3,1 + ΦB~r2,3

|~r1,2×~r3,2|
= ΦB

~r2,3

|~r1,2×~r3,2|
= I~k∆1 , (55)

~K∆2 =
ΦA~r4,1 + ΦB~r1,3 + ΦB~r3,4

|~r4,3×~r3,1|
= −ΦB

~r4,1

|~r4,3×~r3,2|
= I~k∆2 , (56)

etc. That is,

~K∆i
= I~k∆i

(57)

with ~k∆i
being the normalized surface current density of triangle ∆i.

Using this triangulization, for example, the third term of the Lagrangian Lideal (39) reads

µ0

8π

Nc,Nc∑
nc,n′

c=1

IncIn′
c

∫
Snc

dfnc

∫
Sn′

c

dfn′
c

~knc · ~kn′
c

|~rnc − ~rn′
c
|

(58)

=
µ0

8π

Nc,Nc∑
nc,n′

c=1

IncIn′
c

Nnc∑
i=1

Nn′
c∑

j=1

~k∆i
~k∆j

∫
S∆i

df∆i

∫
S∆j

df∆j

1

|~r∆i
− ~r∆j

|
,

where Nnc is the total number of triangles representing coil nc. For the explicit computation of
the fourfold integral see [5].
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