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1. Introduction

Magnetized plasma represents a complex system with multi-scaled dynamics, which

challenges numerical implementations. Since several decades the gyrokinetic dynamical

reduction [1], [2], [3] is in the scope of the interest as one of the tools to access

this multi-scaled dynamics investigation: numerically and analytically. The general

gyrokinetic derivation [3] accounts background quantities gradients as well as the

electromagnetic fluctuations at the same order and therefore is rather challenging.

However, simplified orderings leading to the linearized polarization and magnetization

in gyrokinetic Maxwell equations are often implemented in nowadays gyrokinetic codes.

The goal of this paper is to present strictly necessary for numerical implementations

derivation of the reduced particle dynamics and to build up the hierarchy of the most

common reduced particle models.

Modern gyrokinetic theory considered as a field theory gives access to derivation

of a self-consistently coupled gyrokinetic Maxwell-Vlasov equations. The reduced

particle model defines the gyrokinetic Vlasov equation, reconstructed via particles

characteristics. The reduced particle dynamics affects the reduced Maxwell equations

via polarization and magnetization contributions, that link can be systematically

established within the first principle derivation from the gyrokinetic Lagrangian [4],

[5]. Details of such a derivation for the particle models containing up to the second

order Finite Larmor Radius (FLR) corrections can be found in [6].

This paper focusses on the generalised and detailed derivation of the Hamiltonian

models for gyrokinetic particle dynamics, which has been presented in a simplified form

into the Appendix A of [6]. A detailed comparison has been provided between the

second order FLR model following from the general gyrokinetic derivation and the one

recently implemented into the Particle-In-Cell (PIC) code ORB5 [7].

This paper is organised as follows: in Sec. 2 we remind the main idea of the

gyrokinetic reduction, in Sec. 3 we set up the general framework for the change of

coordinates and the reduced dynamics derivation, in Sec. 4 we present the Hamiltonian

models derivation: first in the case with full series of the Finite Larmor Radius

(FLR) corrections and then in the long-wavelength approximation. The second order

(with respect to the amplitudes of fluctuating fields) Maxwell-Vlasov gyrokinetic model

corresponding to the full FLR gyrokinetic particle model and the model containing

the second order FLR corrections suitable for the long-wavelength approximation are

currently implemented in PIC code ORB5.

2. Gyrokinetic dynamical reduction

In magnetised plasmas presence of strong magnetic field induces scales of motion

separation. Particle’s dynamics is decomposed into the fast rotation around the

magnetic field lines and slow drift motion in the perpendicular direction. The cyclotron

frequency Ω = eB/mc , where e andm are, respectively, the charge and mass of particles,
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B is the magnetic field amplitude and c is the speed of light, sets the scale of gyromotion.

The gyromotion is described by a fast gyroangle variable θ to which corresponds a

canonically conjugated slowly varying magnetic moment µ. At the lowest order

µ = mv2⊥/2B, (1)

where v⊥ is the perpendicular velocity of particles with respect to the magnetic field

lines. In slab magnetic geometry µ is an exact dynamical invariant. However magnetic

curvature effects as well as the presence of electromagnetic fluctuations destroys that

exact invariance. The gyrokinetic dynamical reduction uses the fact that averaged over

long times magnetic moment still being conserved, i.e. 〈µ̇〉t = 0.

The goal of the gyrokinetic dynamical reduction consists in building up a new

set of phase space variables, such that θ dependence is completely uncoupled and

µ has a trivial dynamics, i.e. µ̇ = 0. Therefore, the reduced particle dynamics is

described on the 4 dimensional phase space with variables (X, p), where X represents

the reduced particle position and p is the corresponding scalar momentum coordinate.

This change of coordinate is constructed via perturbative series of near-identity phase

space transformations, i.e. these transformations are invertible at each step of the

perturbative procedure. The reduced position X has a simple geometrical meaning: it

is the instantaneous center of the fastest particle’s rotation around the magnetic field

line. Therefore, the gyrokinetic coordinate transformation is a shift between the initial

particle coordinate and the instantaneous center of its rotation. Performing numerical

simulations on the 4 dimensional phase space instead of the 6 dimensional one aims to

reduce numerical costs.

The dynamical reduction can be organized in one or two steps. Within the one

step procedure, the contributions from the background geometry non-uniformities and

electromagnetic fluctuations to the breaking of the magnetic momentum conservation

are taken into account simultaneously. The two step procedure allows to treat those

effects at the separate stages, which may have some advantages for making a direct

link between the coordinate transformation and polarization effects it induces on the

reduced particle and field dynamics. Here we consider the two-step procedure in order

to make a clear separation between the polarization contributions associated to each

of those transformations at the lowest order. Within the two step procedure, a small

parameter is associated to each transformation: for the guiding-center εB = ρth/LB,

where ρth is thermal Larmor radius of particle and LB = ∇B/B sets the spatial scale

for background magnetic field variation, and εδ = (k⊥ρth) eφ/T for the gyrocenter.

Following the gyrokinetic code ordering, we consider in this work that εB � εδ, i.e. all

the background gradient effects are of the superior order with respect to the amplitudes

of the fluctuations.

As a perturbative theory, each of the coordinate transformations: the guiding-

center and the gyrocenter represent an infinite series of corrections ordered accordingly

to the corresponding small parameter: εB or εδ. From the point of view of spatial

components of the coordinate transformation, it means that the exact gyrokinetic
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coordinate transformation contains an infinite series of polarization displacements. In

this work we provide an explicit derivation of the reduced particle dynamics at the lowest

orders of both transformations. In that case, spatial components of both phase space

transformations: guiding-center and gyrocenter represent a shift between the initial

non-reduced particle position x and the reduced gyrocenter position X:

x = X + ρ0(X, µ, θ) + εδρ1(X, µ, θ), (2)

where we have introduced polarization displacements of two kind: ρ0 corresponding to

the lowest order guiding-center reduction and ρ1 corresponding to the lowest order of

the gyrocenter reduction.

The lowest order guiding-center displacement is given by:

ρ0 ≡
mc

e

√
2µ

mB
ρ̂ ≡ ρ0ρ̂ ∼ O(ε0B), (3)

where ρ̂ is the unitary vector in the plane perpendicular to the background magnetic

field; the magnitude of magnetic field B is evaluated at the reduced position X. The

general gyrokinetic derivation comes up with a result that all the following guiding-center

polarization displacements are at least of the order O(εB) or higher (see, for example

the Eq. 36 in [8] or the Eqns. 63 and 66 in [9]), this is why we are not considering them

here.

In the same time, the lowest order gyrocenter displacement:

ρ1 =
mc2

B2
∇⊥

(
φ1(X)− pz

mc
A1‖(X)

)
∼ O(εδ), (4)

where pz is the gyrocenter scalar canonical momentum coordinate related to the parallel

guiding-center momentum accordingly to the Eq. (10). In this work we consider

the gyrokinetic coordinate transformation in two cases: in the Sec. 3 we present the

transformation containing all the Finite Larmor Radius (FLR) corrections, i.e. from the

point of view of functional dependencies of electrostatic potentials containing corrections

of all orders related to the guiding-center transformation x = X + ρ0.

Then in the Sec. 5.2 we explicit the change of coordinate at the lowest FLR order,

which corresponds from the physical point of view to the long-wavelenght approximation

with k⊥ρth � 1. We show that in this limit the gyrocenter phase space transformation

affects the spatial coordinate only, while the velocity phase space coordinates (p, µ, θ)

remain unchanged, so it acts only as a shift between the guiding-center X+ ρ0 and the

gyrocenter X + ρ0 + εδρ1 positions.

3. Phase-space perturbative procedure

In modern gyrokinetic theory, definition of new phase-space coordinates is done within

common perturbative procedure together with the derivation of the reduced dynamics.

At the first step, the guiding-center dynamical reduction starts from the local particle

coordinates (x,v). To access those coordinates, one needs to define two vector basis:

the static one and the dynamical one. The static basis is related to the magnetic field
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line and the dynamical one rotates with the particle. As the static basis we choose

the natural Frenet triad : the unitary magnetic field vector b̂ = B/B, the normalized

curvature vector b̂1 = b̂ ·∇b̂/|b̂ ·∇b̂| and b̂2 = b̂× b̂1. Then, the dynamical basis is

defined from the static one as follows:

ρ̂ = b̂1 cos θ − b̂2 sin θ, ⊥̂ = −b̂1 sin θ − b̂2 cos θ, (5)

where ρ̂ is used for definition of the guiding-center displacement ρ0 in the Eq. (3) and

therefore the local particle velocity can be decomposed in the following way:

v = v‖b̂ +

√
2µB

m
⊥̂. (6)

At the lowest order, the guiding-center transformation is defined as follows: the

particle space coordinate is decomposed as x = X + ρ0(X, µ, θ), with X the reduced

particle position and ρ0 the lowest order guiding-center polarization shift; the scalar

momentum coordinate is the parallel kinetic momentum p‖ = mv‖; µ is the lowest order

magnetic momentum given by the Eq. (1) and θ is the fast angle of rotation.

Since all kind of the invertible coordinate transformations are allowed for expression

of the Lagrangian dynamics, we write the expression for the guiding-center phase space

Lagrangian 1-form in the
(
X, p‖, µ, θ

)
coordinates:

Lgc

(
X, p‖, µ, θ

)
=
e

c
A∗ · Ẋ +

mc

e
µ θ̇ −Hgc, (7)

where the symplectic part contains the modified magnetic potential:

A∗ = A +
c

e
p‖b̂. (8)

The guiding-center Hamiltonian is given by:

Hgc =
p2‖
2m

+ µB. (9)

The Lgc Lagrangian is the starting point of the derivation. At the next step,

we perturb that expression with first order fluctuating time-dependent electromagnetic

fields φ1 and A1‖ both ∼ O(εδ) . Remark that in our derivation the perpendicular

part of the perturbed magnetic potential is absent, which corresponds to the choice

of considering the perpendicular component of the perturbed magnetic field only:

B1 = ∇×A1‖b̂. This approximation is implemented into the electromagnetic Particle-

In-Cell code ORB5.

In order to take into the account then eventual time-dependence of perturbed

electromagnetic potentials A1‖ and φ1 we extend the phase space from 6 to 8

dimensions. Therefore, formally the gyrocenter dynamical reduction is performed on

the 8-dimensional phase space where (t, w) are canonically conjugated: t time and

w energy variables. This extension of the phase space is a standard for dynamical

systems procedure of autonomization (see for example [10]). From the physical point of

view, relevant reduced dynamics is still be performed on the 4 dimensional part of the

gyrocenter phase space with coordinates (X, pz), where

pz = mv‖ +
e

c
A1‖(X + ρ0) (10)
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is the gyrocenter canonical momentum.

The perturbed guiding-center phase-space Lagrangian is given by:

L̃ (X, pz, µ, θ; t, w) =
(
e

c
A + pzb̂

)
Ẋ +

mc

e
µθ̇ −

(
pz
2m

+ µB + eφ1(X + ρ0)

− e pz
2m

A1‖(X + ρ0) +
1

2m

(
e

c

)2

A2
1‖(X + ρ0)− w

)
, (11)

where A is the background vector potential, and b̂ is the unitary vector associated to

the background magnetic field B = ∇ × A. As all the background quantities A, b̂

and B are evaluated into the reduced gyrocenter position X, while the perturbative

electromagnetic potentials A1‖ and φ1 are evaluated into the guiding-center position

X + ρ0, i.e. containing the gyrophase dependencies through the ρ0. The two first

terms in the Eq. (11) represent the non-perturbed symplectic part and the last term

is the perturbed Hamiltonian of the system. Keeping the symplectic part gyrophase-

independent is possible within the pz-representation (10) of the dynamics. In that

representation all gyrophase-dependent terms are contained into the expression for the

Hamiltonian. This is one of the common choices for the Particle-In-Cell simulations

since it avoids appearance of the inductive electric field (the explicit time-derivative of

the perturbative magnetic potential A1‖) into the particle characteristics.

In the next section we show how to eliminate the gyrophase-dependencies induced

by the perturbed electromagnetic potentials with using the Lie-transform near-identity

transformation at the first order with respect to the small parameter εδ. We also explicit

the connection between the choice of the displacements ρ0 , ρ1 and elimination of the

gyrophase-dependencies into the dynamics.

4. Full FLR Hamiltonian model

In this section we build up a near-identity phase-space change of variables aiming to

eliminate gyrophase-dependencies from the perturbative electromagnetic potentials A1‖

and φ1 into the dynamics generated by the phase-space Lagrangian (11). We also show

the link between this change of coordinate and corrections appearing into the expression

for the reduced Hamiltonian.

Since in the pz representation of dynamics the symplectic part of the phase-space

Lagrangian is unperturbed, the gyrocenter change of coordinates will induce effects only

into its Hamiltonian part.

To define that change of coordinates, we derive the expression for the Poisson

Bracket, which can be obtained from the symplectic part of the perturbed Lagrangian

(11):

{F,G} =
e

mc

(
∂F

∂θ

∂G

∂µ
− ∂F

∂µ

∂G

∂θ

)
+

B∗

B∗‖
·
(
∇F

∂G

∂pz
− ∂F

∂pz
∇G

)

− cb̂

eB∗‖
· (∇F ×∇G)− ∂F

∂w

∂G

∂t
+
∂F

∂t

∂G

∂w
, (12)
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where B∗ = B + e
c
pz∇× b̂ and B∗‖ = B∗ · b̂. The first three terms of that bracket are

ordered following the formal ordering introduced by Newcomb [11]: εB ∼ e−1. So the

first term generates the fastest scale of motion, the second one is related to the drifts

along the magnetic field lines, while B∗/B∗|| ∼ b̂; and the last one is associated with the

slowest perpendicular drifts. The last two canonical terms corresponds to the extension

of the phase space up to 8 dimensions.

Following the pz-representation of the Lagrangian defined in the Eq. (11), the second

order gyrocenter Hamiltonian is:

H = H0 + e ψ1(X + ρ0(µ, θ), pz) +
1

2m

(
e

c

)2

A1‖(X + ρ0(µ, θ))
2, (13)

where the unperturbed guiding-center Hamiltonian now writes as:

H0 =
p2z
2m

+ µB (14)

and

ψ1(X + ρ0(µ, θ), pz) ≡ φ1(X + ρ0)−
1

mc
pz A1‖(X + ρ0) (15)

is the linear perturbed gyrocenter potential. Remark that the guiding-center

displacement ρ0 given by the Eq. (3) is formally depending on the phase-space

coordinates (X, µ, θ). Because all the dynamical fields automatically depend on the

reduced position X not only through the guiding-center displacement field ρ0, in

what follows we keep in mind the ρ0 dependence in the velocity part of the phase-

space coordinates (µ, θ) without specifying its spatial dependency. This is justified

by the fact that we are performing the calculation on the lowest order with respect

to the guiding-center displacement ρ0. Derivation of ρ0 with respect to the spatial

coordinate X would lead to appearance of the ∇B/B coefficient, which would in its

turn lead to appearance of the O(εB) terms, which are neglected here anyway. To

make formulas appearing more compact we omit writing the functional dependencies

of the displacement ρ0 in the following text explicitely but we keep in mind its (µ, θ)

dependencies.

4.1. Gyrocenter phase-space coordinate transformation

In order to eliminate the gyrophase dependence of the Hamiltonian H, we perform a Lie

transform which maps the guiding-center coordinates (X, pz, µ, θ) into the gyrocenter

ones. Up to the first order, this change of coordinates is defined as follows:

e−£S1 (X + ρ0) = X + ρ0 − εδ{S1,X + ρ0} (16)

e−£S1pz = pz − εδ{S1, pz} (17)

e−£S1µ = µ− εδ{S1, µ} (18)

e−£S1θ = θ − εδ{S1, θ}, (19)

where S1 is the generating function defining the transformation at the first order.
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We define the first order gyrocenter displacement as the shift between the guiding-

center and the gyrocenter positions:

ρ1 = −εδ{S1,X + ρ0}, (20)

therefore

e−£S1 (X + ρ0) = X + ρ0 + ρ1. (21)

4.2. Full FLR gyrocenter dynamics

In the same time, the Hamiltonian expressed in new coordinates, up to the second order

in εδ is:

H = e−£S2e−£S1H = H0 − εδ{S1, H0}+
1

2
ε2δ{S1, {S1, H0}}+ ε2δ{S2, H0}

+ εδψ1(X + ρ0; pz)− ε2δ{S1, ψ1(X + ρ0; pz)}

+ ε2δ
1

2m

(
e

c

)2

A1‖(X + ρ0)
2 +O(ε3δ), (22)

where S1 is the same generating function as in the Eqns. (16-19). Remark that from

the point of view of the Hamiltonian, S1 is removing the gyrophase dependence at the

orders εδ and ε2δ . The generating function S2 is defined such that it removes the gyroangle

dependence from the order ε2δ terms. The expression of the generating function S2 is

defined at the next order of perturbative procedure and involves terms of O(ε3δ).

The expression for S1 is obtained from the condition that the gyrophase dependent

part of linear electromagnetic perturbation ψ̃1 is removed from the lowest order

gyrocenter Hamiltonian:

{S1, H0} = e ψ̃1 (X + ρ0, pz) = eψ1 (X + ρ0, pz)−eJ0 (ψ1 (X + ρ0, pz))(23)

and the gyroaveraged quantities are defined as follows:

(J0ψ) (X, pz, µ) =
1

2π

∫ 2π

0
ψ (X + ρ0, pz) dθ. (24)

Therefore, the second order contribution:

{S1, {S1, H0}} = {S1, ψ̃1 (X + ρ0; pz)} (25)

.

By taking into the account the explicit expression for the guiding-center Poisson

bracket (12) at the lowest order:

{F,G} =
e

mc

∂

∂θ

(
F
∂G

∂µ

)
− e

mc

∂

∂µ

(
F
∂G

∂θ

)
, (26)

the condition (23) becomes:

e

mc

∂S1

∂θ

∂Hgc

∂µ
=
eB

mc

∂S1

∂θ
= e ψ̃1 (X + ρ0; pz) , (27)

and therefore the generating function is:

S1 =
e

Ω

∫
dθ ψ̃1 (X + ρ0; pz) , (28)
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which means that this function has a fluctuating part only, i.e. (J0S1) = 0 and

S1 = S1 (X + ρ0; pz).

Since S2 removes fluctuating parts from the second order terms, we only need to

evaluate the corresponding gyroaveraged contributions. With taking into the account

the Eq. (25) and the fact that S1 is purely fluctuating function: J0 ({S1, ψ1}) =

J0

(
{S1, ψ̃1}

)
we obtain a partial cancellation of the second order term O(ε2δ):

1

2
J0 ({S1, {S1, H0}}) − J0 ({S1, ψ1(X + ρ0; pz)})

= − 1

2
J0 ({S1, ψ1(X + ρ0; pz)}) (29)

Finally, we get the expression for the second order Hamiltonian containing the

guiding-center FLR corrections at all orders:

H
full

=
p2z
2m

+ µB + εδ (eJ0 (φ1(X + ρ0)) (30)

− e

mc
pz J0

(
A1‖(X + ρ0)

))
+ ε2δ

1

2m

(
e

c

)2

J0

(
A1‖(X + ρ0)

2
)

− ε2δ
e

2
J0

(
{S1, ψ̃1(X + ρ0, pz)}

)
. (31)

With using the expression for the lowest order Poisson bracket given by the Eq. (26):

{S1, ψ̃1(X + ρ0; pz)} =
∂

∂µ

(
ψ̃1(X + ρ0; pz)

∂S1

∂θ

)

− ∂

∂θ

(
ψ̃1(X + ρ0; pz)

∂S1

∂µ

)

with using that ∂θS1 = ψ̃1(X + ρ0; pz), after gyroaveraging, we get:

J0

(
{S1, ψ̃1(X + ρ0; pz)}

)
= ∂µJ0

(
ψ̃ (X + ρ0; pz)

2
)
. (32)

H
full

=
p2z
2m

+ µB + εδ (eJ0 (φ1(X + ρ0))

− e

mc
pz J0

(
A1‖(X + ρ0)

))
+ ε2δ

1

2m

(
e

c

)2

J0

(
A1‖(X + ρ0)

2
)

− ε2δ
e

2mc
∂µJ0

(
ψ̃ (X + ρ0; pz)

2
)

(33)

This result corresponds to the derivation given in [12] in the electrostatic limit and

to the expression obtained in the slab magnetic geometry in [13].

5. Hamiltonian model in long-wavelength approximation

The long-wavelenght approximation with k⊥ρth � 1 is implemented into the gyrokinetic

codes as an useful tool for investigation of the MHD modes, it is also suitable for studies

of turbulence generated by interaction of modes with low toroidal numbers. As have
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been shown in the latest linear electromagnetic benchmark [14], the long-wavelength

approximation implemented into the ORB5 code allows to treat modes with k⊥ρth < 0.6.

From the point of view of the gyrokinetic dynamical reduction, the long-wavelength

limit means that only the lowest order guiding-center FLR effects are included into

the derivation. The four-point gyroaverage approximation [15] is consistent with the

long-wavelength approximation.

Recently a full FLR solver for the Poisson equation has been implemented in ORB5

[Julien PhD]. Preliminary results shown that the new algorithm is 2 times slower then

the long-wavelength solver. This is mostly due to the need for additional integration

points for the gyroaverage algorithm as it was already shown in [16].

In this section we show how to obtain that simplified model in the framework

of the general derivation. There are two different ways to proceed. First of all, one

can perform the first order FLR series truncation directly on the expression of the

second order electrostatic potential given by the Eq. (32). Another possibility is to

follow the main steps of the general derivation with introducing the FLR truncation

at each step: starting with the expression for the generating function S1, getting

the corresponding gyrocenter change of coordinates and finally the expression for the

simplified Hamiltonian. In the Sec. 5.2 we expose the main steps of this derivation.

We start with obtaining the long wavelenght limit model via the direct full FLR

model truncation.

5.1. Direct full FLR model truncation

Here we evaluate the lowest order FLR contribution to the second order term of the

Hamiltonian (33). We start with decomposing the first order fluctuating electromagnetic

potential into the FLR series:

ψ̃1(X + ρ0, pz) = ρ0 ·∇ψ1(X, pz) + ρ0ρ0 : ∇∇ψ1(X, pz) + . . . (34)

In the long-wavelength limit we keep the first term only and we calculate:

∂

∂µ
J0

(
ψ̃1 (X + ρ0(µ, θ); pz)

2
)

=
∂

∂µ
J0

(
|ρ0 ·∇ψ1(X, pz)|2

)
= (35)

=
∂

∂µ

(
ρ20
)
J0 (ρ̂ρ̂ : ∇ψ1(X, pz)∇ψ1(X, pz)) =

(
c

e

)2 1

B
|∇⊥ψ1(X, pz)|2 ,

where we have used the definition (3), the fact that 1
2

∂ρ20
∂µ

= c2m
e2B

and the dyadic tensors

property J0 (ρ̂ρ̂) = 1
2

(
b̂1b̂1 + b̂2b̂2

)
= 1

2
1⊥.

The magnetic term of the second order is obtained from:

J0

(
A1‖(X + ρ0)

2
)

= J0

((
A2

1‖(X) + ρ0 ·∇A1‖(X) +
1

2
ρ0ρ0 : ∇∇A1‖(X)

)2
)

= A2
1‖(X) +m

(
c

e

)2 µ

B

∣∣∣∇⊥A1‖(X)
∣∣∣2 +m

(
c

e

)2 µ

B
A1‖(X) ∇2

⊥A1‖(X). (36)

We remark that the second term is missing into the ORB5 model [6], which corresponds

to the slab geometry result obtained in [13].
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H
FLR

=
p2z
2m

+ µB + εδ

(
e J0 (φ1(X + ρ0))−

e

mc
pz J0

(
A1‖(X + ρ0)

))
+ ε2δ

(
1

2m

(
e

c

)2

A2
1‖(X) +m

(
c

e

)2 µ

B

∣∣∣∇⊥A1‖(X)
∣∣∣2) (37)

+ ε2δ

(
m
(
c

e

)2 µ

B
A1‖(X) ∇2

⊥A1‖(X)− mc2

2B2

∣∣∣∣∇⊥φ1(X)− e

c
pz∇⊥A1‖(X)

∣∣∣∣2
)
,

5.2. Gyrocenter coordinate transformation in long-wavelength approximation

In this section we derive the truncated Hamiltonian model (37) by performing the

gyrocenter coordinate transformation (16-19) at the lowest FLR order. To that purpose,

we are taking into the account only the lowest order FLR correction to the generating

function S1. Since the lowest order FLR correction to the fluctuating electromagnetic

potential is ψ̃1 (X + ρ0) = ρ0ρ̂ ·∇ψ1(X), from the Eq. (28) with using the property of

rotating basis vectors ρ̂ =
∫
dθ ⊥̂ , we get:

S1 =
mc

B
ρ0 ⊥̂ ·∇ψ1(X). (38)

Now we calculate the corresponding gyrocenter displacement ρ1 with using the

definition (20). Taking into account the lowest order Poisson bracket (26):

ρ1 = −{S1,X + ρ0} = − e

mc

(
∂S1

∂θ

∂ρ0

∂µ
− ∂ρ0

∂θ

∂S1

∂µ

)
.

From the definition of rotating basis vectors (5), and ∂µρ
2
0 = 2mc2

e2B
, we have:

e

mc

∂S1

∂θ

∂ρ0

∂µ
=
mc2

eB2
ρ̂ρ̂ ·∇ψ1 and − e

mc

∂ρ0

∂θ

∂S1

∂µ
=
mc2

eB2
⊥̂⊥̂ ·∇ψ1.

By taking into the account definition of the dyadic tensor 1⊥ ≡ ρ̂ρ̂ + ⊥̂⊥̂,

the expression for the first order gyrocenter displacement in the long wavelength

approximation is:

ρ1 = −mc
2

eB2
∇⊥ψ1. (39)

At the lowest FLR order of the gyrocenter phase-space transformation only the

spatial coordinate is affected. Velocity space coordinates (pz, µ, θ) remain unchanged.

To show that it is sufficient to demonstrate that {S1, pz}, {S1, µ} and {S1, θ} represent

contributions of the next order with respect to the FLR decomposition. This

demonstration is summarized into the Appendix.

For that reason, at the lowest FLR order the gyrocenter transformation can be

interpreted as a simple shift of spatial coordinate with respect to the displacement ρ1.

Remark, that in the electrostatic case, it is easier to demonstrate that fact since the

generating function of the gyrocenter transformation is given by the fluctuating part of

the electrostatic potential φ1 = φ1(X + ρ0) and does not involve any pz dependencies.
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Since we still working in the pz-representation, the expression for the Poisson

Bracket remains unchanged under the FLR truncation. However, the expression for

the second order ∼ O(ε2δ) contributions to the reduced Hamiltonian will be affected.

Following the general procedure of the Hamiltonian transformation given by the

Eq. (22), we consider:

e−£S1ψ1(X + ρ0) = ψ1(X + ρ0 + ρ1)

and therefore:

ψ1(X + ρ0 + ρ1) = ψ1(X + ρ0) + ρ1 ·∇ψ1(X + ρ0) +O(ε3δ),

now comparing this expression with formal Lie-transform implementation:

e−£S1ψ1(X + ρ0) = ψ1(X + ρ0) + {S1, ψ1(X + ρ0)}+O(ε3δ)

we identify that

{S1, ψ1(X + ρ0)} = ρ1 ·∇ψ1(X + ρ0). (40)

Taking into the account the condition for definition of the generating function S1 given

by the Eq. (25) and the fact that J0

(
{S1, ψ̃1}

)
= J0 ({S1, ψ1}), we recover the same

partial cancellation of the second order terms as in the full FLR case given by the

Eq. (29).

Finally, at the leading order in ρ0 the second order electromagnetic contribution is:

J0

({
S1, ψ̃1 (X + ρ0)

})
= −J0 (ρ1 ·∇ψ1) .

Therefore, using the above definition for ρ1 given by the Eq. (39), we find the same

expression for the second order Hamiltonian as from the direct FLR series truncation

of the full FLR model (33).

This demonstrates the link between the definition of the reduced particle position,

and in particular the displacement ρ1, and the elimination of the gyrophase dependence

of the reduced Hamiltonian dynamics.

6. Conclusions

In this work we have performed a detailed derivation of the second order gyrocenter

Hamiltonian models in the case with full FLR corrections and within the long-wavelength

approximation. The textitlong-wavelength model have been obtained in a two different

ways: within the direct truncation of the full FLR model and by constructing the

dynamical reduction procedure with the gyrocenter generating function, containing

only the lowest order FLR contribution. We have explicitely shown that in the long-

wavelength approximation, the gyrokinetic dynamical reduction resumes into the shift of

the particle position, which clarifies the purpose of the complex gyrokinetic phase-space

coordinate transformation.
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Appendix A. Velocity coordinate transformation
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