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Abstract

Electromagnetic gyrokinetic particle-in-cell simulations have been inhibited for long time by

numerical problems. This paper discusses the origin of these problems. It also gives an overview

and summary of the mitigation techniques.
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I. INTRODUCTION

There is a large number of cases in fusion plasmas in which electromagnetic kinetic effects

are of importance. These include Alfvén eigenmodes, reconnection, anomalous transport

caused by electromagnetic drift microinstabilities etc. The characteristic frequencies of all

these phenomena are smaller than the gyrofrequency. Therefore, gyrokinetic theory [1] can

be applied. A potential benefit is a substantial reduction of the computational cost of the

simulations.

In some cases a further reduction of the description is possible using, for example, local

flux-tube simulations [2, 3], or the truncated fluid-electron scheme [4, 5], or the hybrid kinetic

MHD (Magneto-Hydrodynamics) [6]. However, often it is necessary to assess the electron

kinetics, such as trapped-electron effects, or non-adiabatic electron dynamics at resonant flux

surfaces. This has to be done using fully gyrokinetic computations for all species. Global

effects can also be of importance. For example, they are important in the interplay of global

physics, e. g. MHD modes, and microturbulence, which is believed to affect the nonlinear

evolution of the Alfvén Eigenmodes in toroidal geometry, sawtooth oscillations, neoclassical

tearing modes, etc.

Unfortunately, global gyrokinetic electromagnetic simulations suffer from numerical prob-

lems. The v‖-formulation of the electromagnetic gyrokinetic theory is difficult to implement

using an explicit time solver. This was observed for the first time in 1992 by Reynders [7].

The p‖-formulation does not have this problem. Therefore, it is nearly always used in elec-

tromagnetic gyrokinetic codes of all types (Eulerian, particle-in-cell, and semi-Lagrangian).

However, there is a price to pay, the so-called cancellation problem [8]. This problem was

first observed with a particle-in-cell code by Cummings [9] in 1995. As a consequence of the

cancellation problem, electromagnetic gyrokinetic simulations have been limited to the very-

low-beta cases β <
√

me/mi, see Ref. [10]. The cancellation problem has been addressed

within the particle-in-cell framework in Refs. [11–14] and using the Eulerian approach in

Ref. [15]. Due to the progress made in understanding the numerical issues inhibiting the elec-

tromagnetic gyrokinetic codes, it has become possible to simulate Alfvénic physics using the

global gyrokinetic particle-in-cell code GYGLES: Toroidal Alfvén Eigenmodes (TAE) [16–

19], Global Alfvén Eigenmodes [16], the internal m = 1, n = 1 kink mode and m = 1, n = 1

reconnecting modes [20]. Later on, another approach to the mitigation of the cancellation
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problem has been developed [21]. This approach is based on the so-called mixed-variable

formulation [22] of the gyrokinetic theory. Further understanding of the mixed-variable mit-

igation has been achieved in Ref. [23]. The global particle-in-cell code EUTERPE [24] has

been used in the papers [21–23]. Recently, a number of simulations have been performed

addressing the Alfvénic physics, both in the linear and nonlinear regimes, using the gyroki-

netic EUTERPE [25–27] and ORB5 [28, 29] codes. These simulations have become possible

after the mitigation techniques have been employed to handle the cancellation problem.

The purpose of the present paper is to give an overview of the main numerical problems

appearing in gyrokinetic electromagnetic simulations and give a summary of the mitigation

techniques. The paper is organised as follows. In Sec. II, the v‖- and p‖-formulations of the

electromagnetic gyrokinetic theory are discussed together with their numerical properties.

In Sec. III, the cancellation problem and its mitigation techniques in the p‖-formulation are

described. Finally in Sec. IV, the mixed-variable formulation is addressed, completing the

list of presently available mitigation techniques. The conclusions are discussed in Sec. V.

II. VARIOUS FORMULATIONS OF THE GYROKINETIC THEORY

The gyrokinetic theory is based on an expansion in small parameters defined by the

so-called minimal gyrokinetic ordering [30]:

ǫB = ρg/LB ≪ 1 , ǫ = ω/ωc ∼ k‖/k⊥ ∼ qδφ/T ∼ δB/B ≪ 1 , (1)

where ρg =
√
mT/(eB) is the particle gyroradius, LB is the characteristic scale of the

unperturbed magnetic field B, and T is the plasma temperature. This ordering implies that

the fusion plasma is magnetized, the turbulence is low-frequency, flute-like and weak. Based

on these small parameters, a perturbative elimination of the fast gyro-scale can be carried

out. The gyrokinetic perturbative derivation starts from the perturbed Poincaré-Cartan

form [1]:

γ = qA∗(R) · dR +
m

q
µ dθ −

(

mv2‖
2

+ µB

)

dt + q
[

A‖(x) b · dx− φ(x) dt
]

(2)

where the perturbed electrostatic potential φ and the perturbed parallel magnetic potential

A‖ depend on the gyro-phase through x = R + ρ(θ), which has subsequently to be elim-

inated. Here, R is the guiding-center position, ρ is the gyroradius, θ is the gyro-phase, m
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is the particle mass, q is the particle charge, v‖ is the parallel velocity, µ is the magnetic

moment, B is the ambient magnetic field, A∗ = A + (mv‖/q) b is the so-called extended

magnetic potential, A is the magnetic potential corresponding to the ambient magnetic field,

and b is the unit vector in the direction of the ambient magnetic field.

The gyro-dependence is eliminated from the Poincaré-Cartan form using Lie transform

techniques Γ = eĜγ + dS, see Ref. [1]. This procedure allows a substantial amount of

freedom. For example, the perturbed magnetic potential can be put into the Hamiltonian

part of the Poincaré-Cartan form, leading to the so-called Hamiltonian, or p‖-formulation:

Γ = qA∗ · dR+
B

Ω
µ dθ −

(

mp2‖
2

+ µB + q
〈

φ− p‖A‖

〉

)

dt (3)

Here, p‖ denotes the parallel velocity coordinate in the p‖-formulation. Here, we use this

notation to stress the fact that the explicit expressions of the phase space gyrocenter coordi-

nates through the guiding center coordinates depend on the formulation of the gyrokinetic

theory chosen [1]. Ih the following, however, we will use for simplicity the same symbol v‖

to denote the Lie transform of the parallel velocity in all the formulations considered.

Alternatively, the perturbed magnetic potential can be left in the symplectic part of the

Poincaré-Cartan form, resulting in the symplectic, or v‖-formulation:

Γ = qA∗ · dR+
B

Ω
µ dθ + 〈A‖〉b · dR−

(

mv2‖
2

+ µB + q〈φ〉
)

dt (4)

The gyrokinetic system of equations includes the gyrokinetic Vlasov equation, here writ-

ten for the perturbed part of the distribution function f̄1s with F0 being the background

distribution function, usually a Maxwellian:

∂f̄1s
∂t

+ Ṙ · ∂f̄1s
∂R

+ v̇‖
∂f̄1s
∂v‖

= −Ṙ(1) · ∂F0s

∂R
− v̇

(1)
‖

∂F0s

∂v‖
, (5)

the equations for the particle trajectories (Ṙ, v̇‖), and the field equations for the perturbed

electrostatic and parallel magnetic potentials. These equations can straightforwardly be de-

rived from the gyrokinetic Poincaré-Cartan form using the variational principle, see Ref. [1].

In the v‖-formulation, the equations of motion are

Ṙ = v‖b̃
∗ +

1

qsB̃∗
‖

b×


µ∇B + qs



∇〈φ〉+
∂
〈

A‖

〉

∂t
b







 (6)

v̇‖ = − 1

ms
b̃∗ · µ∇B − qs

ms



b̃∗ · ∇ 〈φ〉+
∂
〈

A‖

〉

∂t



 (7)

B̃∗ = B +
ms

qs
v‖ (∇× b) +∇×

(

〈A‖〉 b
)

, B̃∗
‖ = b · B̃∗ , b̃∗ = B̃∗/B̃∗

‖ (8)
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and the field equations, the quasineutrality condition and parallel Ampere’s law, are

∑

s=i,f

∫ q2sF0s

Ts
(φ− 〈φ〉) δgy d6Z =

∑

s=i,e,f

qsn1s , −∇2
⊥A‖ = µ0

∑

s=i,e,f

j‖1s (9)

Here, 〈φ〉 is the gyro-average of the electrostatic potential, δgy = δ(R + ρ − x), n1s =
∫

f̄1s δgy d
6Z is the gyrocenter density, and j‖1s =

∫

v‖ f̄1s δgy d
6Z is the gyrocenter current.

The problem with the v‖-formulation is that the partial derivative ∂〈A‖〉/∂t appears on
the right hand side of Eq. (7) for the parallel acceleration v̇‖. This equation can not be

treated with an explicit time solver (such as the usual 4th order Runge Kutta method) in

a numerical code, whereas implicit time solvers are usually very expensive in terms of the

computation cost and therefore impractical.

In the p‖-formulation, the gyrocenter trajectories are

Ṙ =
(

v‖ −
q

m
〈A‖〉

)

b∗ +
1

qB∗
‖

b×
[

µ∇B + q
(

∇〈φ〉 − v‖∇〈A‖〉
)]

(10)

v̇‖ = − 1

m

[

µ∇B + q
(

∇〈φ〉 − v‖∇〈A‖〉
)]

· b∗ (11)

B∗ = B +
ms

qs
v‖ (∇× b) , B∗

‖ = b ·B∗ , b∗ = B∗/B∗
‖ (12)

Note that ∂〈A‖〉/∂t does not appear in this formulation, which opens a way for cheaper

explicit time solvers to be used. The price for this is to be paid in the field equations:

∑

s=i,f

∫ q2sF0s

Ts
(φ− 〈φ〉) δgy d6Z =

∑

s=i,e,f

qsn1s ,
∑

s=i,e,f

βs
ρ2s

〈A‖〉s −∇2
⊥A‖ = µ0

∑

s=i,e,f

j‖1s (13)

Here, n0〈A‖〉s =
∫ 〈A‖〉F0sδgy d

6Z, ρs =
√
msTs/(qsB), and βs = µ0n0sTs/B

2. Note that

Ampere’s law now contains the extra terms (the so-called skin terms) proportional to βi/ρ
2
i

and βe/ρ
2
e . This terms are induced by the choice of the coordinates in the p‖-formulation.

They have no physical meaning and must be cancelled with similar non-physical formulation-

induced contributions in the parallel p‖-current. Note that the terms to be cancelled, espe-

cially the electron skin term can be very large because of the small electron mass appearing

in the denominator:

βe
ρ2e
A‖ =

µ0n0e
2

me
A‖ (14)

This implies that the cancellation has to be performed very accurately.
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III. CANCELLATION PROBLEM AND ITS MITIGATION

To understand which non-physical contributions are responsible for the cancellation in the

parallel p‖-current, let us define the Boltzmann-like adiabatic perturbation of the distribution

function, corresponding to the perturbed p‖-Hamiltonian:

H̄1 = qs
〈

φ− v‖A‖

〉

, F (ad)
e = F0e e

− H̄1/Te − F0e ≈ − qeF0e

Te

〈

φ− v‖A‖

〉

(15)

Note that this distribution generates a non-vanishing parallel adiabatic current. The adia-

batic current appears due to the second term in the perturbed Hamiltonian, which is propor-

tional to v‖. This term appears in the p‖-formulation, but not in the v‖-formulation. Thus,

the parallel adiabatic currents are “generated” by the p‖-formulation and not by physics.

These currents coincide with the skin terms:

µ0j̄
(ad)
‖s = µ0qs

∫

v‖ F
(ad)
s d3v =

µ0n0sq
2
s

ms
A‖ =

βs
ρ2s

A‖ (16)

The non-physical formulation-induced contributions to the left hand side of Ampere’s law

and to the parallel current must cancel each other. This cancellation must be very accurate,

since the non-physical terms are multiplied by a very large number. To understand what

makes the accurate enough cancellation problematic, we need to recall the discretization

scheme used in the particle-in-cell simulations.

The “Klimontovich” representation is used for the perturbed gyrokinetic distribution

function, expressed in terms of its phase-space coordinates and weights wν :

f̄1s(R, v‖, µ, t) =
Np
∑

ν=1

wsν(t)δ(R−Rν)δ(v‖ − vν‖)δ(µ− µν) (17)

The background distribution function is usually a Maxwellian:

F0s = n0

(

m

2πTs

)3/2

exp

[

−
msv

2
‖

2Ts

]

exp

[

− msv
2
⊥

2Ts

]

(18)

Other choices are also possible, but they would lead to changes in the field equations since

the pullback [1] depends explicitly on the ambient distribution function.

The fields can be represented on a spatial grid using, for example, finite elements, such

as the B splines.

φ(x) =
Ns
∑

l=1

φl(t)Λl(x), A‖(x) =
Ns
∑

l=1

al(t)Λl(x) (19)
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The cancellation problem arises in particle-in-cell simulations since the current is computed

with markers, discretising phase space, whereas the skin terms, known analytically, are

discretised on the spatial grid using finite elements. This numerically different representation

makes the cancellation inexact and leads to the cancellation problem. The terms to be

cancelled are dominant and much larger than the terms describing the physical content.

∇2
⊥A‖ ≪

βe
ρ2e
A‖ ⇒ j̄

(nonad)
‖i + j̄

(nonad)
‖e ≪ j̄

(ad)
‖e (20)

The physics is described by the small rest:

−∇2
⊥A‖ = µ0

(

j̄
(nonad)
‖i + j̄

(nonad)
‖e

)

(21)

The error scales with δA‖ ∼ β/(k2⊥ρ
2
e) making the simulations of finite-beta global modes,

characterised by small k⊥, very challenging. This parameter regime is sometimes referred to

as the MHD limit.

Mitigation strategies of the cancellation problem are based on the observation that the

perturbed true-particle distribution function f1s can be expressed through the gyrocenter

distribution function f̄1s by the p‖-pullback transform [1]:

f1s = f̄1s + {S1, F0s}+
qs〈A‖〉
ms

∂F0s

∂v‖
, ωcs

∂S1

∂θ
= qs(ψ − 〈ψ〉) , ψ = φ− v‖A‖ (22)

This expression has to be used both in Ampere’s law and in the quasineutrality condition.

In terms of this true-particle distribution function, Ampere’s law becomes

−∇2
⊥A‖ = µ0

∫

v‖

[

f̄1s + {S1, F0s}+
qs〈A‖〉
ms

∂F0s

∂v‖

]

δ(R + ρ− x)d6Z (23)

Here, S1 is the Lie-transform generating function. One can mitigate the cancellation prob-

lem if the entire true-particle distribution function is discretized using the same scheme,

i. e. with the markers. This implies that both the background distribution function and its

perturbation must be represented using the same Klimontovich representation written for

the same set of markers:

f̄1s(Z) =
Np
∑

ν=1

wνδ(Z − Zν(t)) , F0s(Z) =
Np
∑

ν=1

F0s(Zν) ζν δ(Z − Zν(t)). (24)

Here, ζν denotes an elementary phase-space volume associated with a given marker and Zν

are the phase-space coordinates of the marker. This marker discretization of the complete

pullback transform of the gyrokinetic distribution function, i. e. the true-particle distribution
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function, must be used both in Ampere’s law and in the quasineutrality condition. Note

that the second term on the right hand side of Eq. (23), proportional to {S1, F0s}, can be

discretized on the grid since this term does not take part in the cancellation.

There is a technical problem with this approach, since Ampere’s law is used to compute

the parallel magnetic potential A‖, but the true-particle distribution function, expressed

through the gyrokinetic distribution function, depends on A‖, which is unknown at this

point of the computation. The solution of this problem is to introduce an easy-to-compute

estimator for the A‖-dependent part of the p‖-pullback. In practice, one would simply

use the skin term (βe/ρ
2
e)A‖ as the estimator. Formally, if we want to solve the equation

(s+L) a = j, we can add a zero to the right hand side of this equation (s+L) a = j+(ŝ− ŝ)a
with ŝ being our arbitrary estimator, and reformulate the original equation as

(ŝ+ L) a = j + (ŝ− s) a (25)

If the estimator ŝ has been chosen properly, then ‖ŝ − s‖ = O(ε). Therefore, we can use

the small parameter ε to solve Ampere’s law iteratively, expanding the vector potential in

the series a = a0 + εa1 + ε2a2 + . . . and solving for the parallel magnetic potential order by

order in ε:

(ŝ+ L) a0 = j , (ŝ+ L) a1 = (ŝ− s) a0 , . . . (26)

Note that our estimator is given in the finite-element discretisation by the expression:

ŝkl =
∫ βe
ρ2e

Λk(x)Λl(x) d
3x (27)

and the marker-dependent part of the right hand side of the iterative scheme can conveniently

be written through the control variate [14] as

jk − skla
n−1
l =

Np
∑

ν=1

v‖ν



wν +
qs〈A(n−1)

‖ 〉
ms

∂F0s

∂v‖
(Zν) ζν



 〈Λk〉ν (28)

In practice, a straightforward and computationally cheap modification of the current assign-

ment routine is sufficient to treat this contribution.

IV. MIXED-VARIABLE FORMULATION OF THE GYROKINETIC THEORY

The mitigation of the cancellation problem can further be facilitated by a proper choice of

coordinates. Previously, we have mentioned that the perturbative derivation of gyrokinetic
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theory leaves a lot of freedom in the choice of the variables. These alternative formulations

may have very different numerical properties while still describing the same physics. As

example, we have already discussed substantial numerical differences between the v‖- and

p‖-formulations of the theory. Clearly, this freedom can be used to taylor the numerical

properties of the equations to be solved by a code as desired. For electromagnetic particle-

in-cell gyrokinetic codes, the mixed-variable formulation [21–23] is such a good choice re-

ducing the numerical burden by proper coordinates. In this formulation, the v‖- and the

p‖-gyrokinetics are “mixed” in such a way that the resulting equations have superior numeri-

cal properties compared to both original formulations without any significant computational

penalty. Here, we briefly describe the mixed-variable formulation completing the list of the

techniques presently available to mitigate the cancellation problem.

The derivation of the mixed-variable gyrokinetics starts with the splitting of the magnetic

potential into the ‘symplectic’ and ‘hamiltonian’ parts:

A‖ = A
(s)
‖ + A

(h)
‖ (29)

This splitting is completely arbitrary at this stage and will be specified further in a way

which optimises the numerical properties of the equations solved.

After the splitting, the perturbed guiding-center phase-space Lagrangian takes the form:

γ = qA∗ · dR+
m

q
µ dθ + q A

(s)
‖ b · dx+ q A

(h)
‖ b · dx−

[

mv2‖
2

+ µB + qφ

]

dt (30)

Now, we apply a “mixed” Lie transform which moves A
(h)
‖ into the mixed-variable gyrokinetic

Hamiltonian, whereas A
(s)
‖ remains in the gyrokinetic symplectic part of the Poincaré-Cartan

form, which can be written as follows.

Γ = qA∗ · dR +
m

q
µ dθ + q

〈

A
(s)
‖

〉

b · dR−
[

mv2‖
2

+ µB + q
〈

φ− v‖A
(h)
‖

〉

]

dt (31)

The equations of motion in the mixed-variable formulation can straightforwardly be

derived from this Poincaré-Cartan form. The unperturbed equations of motion are not

changed, the perturbed equations of motion are

Ṙ(1) =
b

B∗
‖

×∇
〈

φ− v‖A
(s)
‖ − v‖A

(h)
‖

〉

− q

m
〈A(h)

‖ 〉 b∗ (32)

v̇
(1)
‖ = − q

m

[

b∗ · ∇
〈

φ− v‖A
(h)
‖

〉

+
∂

∂t

〈

A
(s)
‖

〉

]

− µ

m

b×∇B
B∗

‖

· ∇
〈

A
(s)
‖

〉

(33)
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Note that the time derivative of A
(s)
‖ appears on the right hand side of the parallel accelera-

tion. Generally, this would require an implicit time solver, which would be computationally

inpractical. However, since we have added a new degree of freedom by the splitting the

magnetic potenital into two parts, we must introduce a constraint in order to remain on a

physical hypersurface in the resulting extended phase space. This constraint is also arbitrary

and can be specified to optimise numerical properties of our equations. We choose the ideal

parallel Ohm’s law as the constraint for the symplectic part of the magnetic potential:

∂

∂t
A

(s)
‖ + b · ∇φ = 0 (34)

This constraint gives an explicit expression for ∂A
(s)
‖ /∂t so that an explicit time solver, such

as the usual 4th order Runge-Kutta method, is sufficient to treat the parallel acceleration

v̇
(1)
‖ in this mixed-variable formulation of the theory.

The quasineutrality equation has in the mixed variables the same form as in the p‖-

formulation. Ampere’s law takes the form:

∑

s=i,e,f

βs
ρ2s

〈

A
(h)
‖

〉

s
−∇2

⊥A
(h)
‖ = µ0

∑

s=i,e,f

j‖1s +∇2
⊥A

(s)
‖ (35)

Note that the skin terms appear in this equation but they envolve only the hamiltonian part

of the magnetic potential A
(h)
‖ .

Since the splitting of the magnetic potential into two parts is arbitrary, it can be per-

formed at the beginning of each time step, keeping A
(h)
‖ small during the entire simulation.

This leads to the following algorithm [21, 23].

1. At the end of each time step, redefine the magnetic potential splitting:

A
(s)
‖(new)(ti) = A‖(ti) = A

(s)
‖(old)(ti) + A

(h)
‖(old)(ti) (36)

2. As a consequence, redefine A
(h)
‖(new)(ti) = 0

3. The new mixed-variable distribution function must coincide with its v‖(symplectic)-

formulation counterpart computed at the appropriate point of the symplectic phase

space (a transformation of the original point in the mixed-variable space).

f
(s)
1 (Z(s), A‖) = f

(m)
1 (Z(m), A

(s)
‖ , A

(h)
‖ ) (37)
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This expression is completely general and can also be used in the nonlinear simulations

[23], implying in practice that the marker weight is kept fixed during the transforma-

tion, but its position “jumps” according to the coordinate transformation

v
(s)
‖ = v

(m)
‖ − e

m

〈

A
(h)
‖

〉

(38)

In a linear case, one could use the approximation

f
(m)
1s(new)(ti) = f

(s)
1s (ti) = f

(m)
1s(old)(ti) +

qs 〈A(h)
‖(old)(ti)〉
ms

∂F0s

∂v‖
(39)

In this case, we modify the marker weight while keeping its position fixed.

4. Proceed, explicitly solving the mixed-variable system of equations at the next time

step ti+∆t in a usual way, but using the symplectic (v‖-formulation) coordinates and

symplectic distribution function as the initial conditions.

Note that some additional nonlinear terms may appear in the equations of motion, as dis-

cussed in Ref. [23]. These new terms reflect the fact that although the original p‖-Lagrangian

and the mixed-variable Lagrangian describe the same physics, this symmetry is broken by

the truncation involved into the perturbative Lie transform. This symmetry breaking is

however limited to higher orders. The truncated equations describe the same physics to the

relevant order. Numerically, the difference between the truncated systems may be visible,

although small.

V. CONCLUSIONS

The numerical difficulties inhibiting electromagnetic gyrokinetic simulations have been

observed a long time ago. In the v‖-formulation, the numerical problems were seen in 1992

by Reynders [7]. In the p‖-formulation, the cancellation problem was noted by Cummings [9]

in 1995. For a long time, the cancellation problem prevented any substantial effort on global

gyrokinetic particle-in-cell simulations in realistic geometry. As a simplification, various

reduced models, such as the hybrid kinetic-MHD or fluid-electron models, have been used to

circumvent this problem. However, these reduced models have important limitations related

to closure issues. One well-known example of such limitations is given by the difficulties in

describing the micro-tearing physics with the fluid-electron model, described in Ref. [5].
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In the last decade, a lot of work has been done to mitigate the cancellation problem.

Approaches such as the control-variate mitigation and mixed-variable pullback scheme have

been formulated and successfully tested in realistic tokamak and stellarator geometries. It

has been shown that these mitigation schemes can be used both in linear and nonlinear

regimes. The mitigation schemes have been validated on many examples, including an

international ITPA benchmark [31]. Finally, we believe that the fully gyrokinetic electro-

magnetic PIC simulation schemes approach the mainstream of the simulation practice.
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