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A new resistive bolometer system has been developed for MAST-Upgrade. It will measure radiated power in
the new Super-X divertor, with millisecond time resolution, along 16 vertical and 16 horizontal lines of sight.
The system uses a Xilinx Zynq-7000 series FPGA in the D-TACQ ACQ2106 carrier to perform real time data
acquisition and signal processing. The FPGA enables AC-synchronous detection using high performance
digital filtering to achieve a high signal-to-noise ratio, and will be able to output processed data in real time
with millisecond latency. The system has been installed on 8 previously unused channels of the JET vertical
bolometer system. Initial results suggest good agreement with data from existing vertical channels but with
higher bandwidth and signal-to-noise ratio.

I. INTRODUCTION

Bolometers are widely used for radiation measure-
ments in fusion devices. Bolometer measurements are
important for power balance studies, and arrays of detec-
tors can be used to make spatially-resolvedmeasurements
of plasma radiation, enabling an improved understanding
of radiative losses.
The MAST spherical tokamak at Culham Centre for

Fusion Energy (CCFE) is currently undergoing a major
upgrade. A significant feature of the upgraded device
(MAST-U) is the new “Super-X” divertor (SXD) config-
uration, which aims to reduce heat load on the divertor
target plates1. However, this is one of the first fusion
devices to use this particular divertor configuration, so
a thorough and high-quality diagnosis of the SXD is im-
perative. The large number of divertor magnetic field
coils, and gas injection valves, in the MAST-U tokamak
allow the possibility of real-time control applications to
optimize divertor operation. It is therefore advantageous
to have diagnostics which can not only make high qual-
ity measurements, but also produce low-latency real time
data to be used in control and feedback systems.
The new bolometer system which has been developed

for MAST-U has already been introduced in a previous
paper2. In this paper, we describe in more detail the ca-
pabilities of the system. We then go on to demonstrate
operation of the system on the JET tokamak, and com-
pare the results obtained with those of the existing JET
bolometer system.
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FIG. 1. Illustration of the lines of sight of the SXD bolometer
system on MAST-U

II. CAPABILITIES OF THE NEW SYSTEM

The system as developed for MAST-U comprises 32
bolometer sensors with lines of sight in the divertor.
These sensors are of the same design as is to be used
in ITER3. 16 sensors view the chamber vertically and
16 horizontally. Figure 1 shows these lines of sight,
with a simulated emissivity profile as calculated from the
SOLPS code4. The configuration allows us to reconstruct
the 2D emissivity profile from integral line of sight mea-
surements using tomography.
The new bolometer electronics use FPGA technology.

A Xilinx Zynq System-on-chip (SOC), combining a dual
core ARM CPU running Linux and FPGA programmable
logic, is used to control the excitation of the bolometer
sensor, digitisation of the sensor output voltage and pro-
cessing of the signal. The electronics hardware is built by
D-TACQ Solutions5, with the digital signal processing to
be performed on the FPGA being designed by Durham
University and CCFE.
In common with previous resistive bolometer systems,

which consist of a Wheatstone bridge with two resistors
heated by plasma radiation and two resistors shielded,
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the detector signals are measured using AC synchronous
detection6. An AC excitation voltage in the form of a sine
wave, at a frequency of around 20kHz, is applied to one
diagonal of the bridge, and from the output voltage across
the other diagonal of the bridge we measure the ampli-
tude only at the excitation frequency. This technique
allows us to extract the small bolometer signal from the
noisy environment of a tokamak. It involves mixing the
bolometer output signal with a reference signal of the
correct frequency and phase, and low-pass filtering the
mixed signal to remove the mixing harmonics and out-
of-band noise. Traditionally, this has been done using
analogue electronics, which are susceptible to deteriora-
tion over time and to manufacturing tolerances.
In the new system, all of this processing is done digi-

tally. The bridge voltage is digitised, then multiplied by
in-phase and quadrature-phase copies of the excitation
voltage, and the results are filtered using digital finite
impulse response (FIR) filters. This produces I and Q
components, which can be considered as real and imagi-
nary parts of the signal, and so can be converted to po-
lar representation to extract the voltage amplitude. This
process has the additional benefit of being phase sensi-
tive: the true amplitude is produced whatever the phase
of the bridge signal relative to the reference signal, mean-
ing that it is not necessary to manually compensate for
any phase delays in the system.
The excitation frequency is configurable. This allows

the system to be run at a frequency away from other
sources of noise on the tokamak, such as switching power
supplies. Additionally, the filter bandwidth is config-
urable up to 2kHz. Higher bandwidth is suitable for
measuring large transient events, whereas lower band-
width filters will allow measurement of very small but
slowly evolving signals.
Once the amplitude A has been measured, the power

incident on the bolometer sensor can be calculated using:

P =
1

S

(

A+ τ
dA

dt

)

(1)

This is a simplified form of the more complete expression
derived by Giannone et al7. This form has the advantage
of only depending on the measured voltage amplitude
and two calibration constants: the sensitivity S (V/W)
and cooling time constant τ . The calibration procedure
is described in detail in Section 5 of the previous paper
on this system2. It can be performed for every sensor
simultaneously, is fully automated and takes only a few
seconds, meaning it can be performed before every shot
if desired.
The use of digital FIR filters allows for more complex

signal processing than analogue filters. Using knowledge
of the sensitivity and cooling time constants, it is possible
to design a filter kernel that will simultaneously differen-
tiate the voltage signals, multiply by the cooling time
and add this time-derivatitive to the original signals, in
addition to low-pass filtering the signals. This means we
can actually calculate P for each sensor using Equation

FIG. 2. Lines of sight of bolometer system, as installed on
JET

1 on the FPGA in real time, and this data is available
to send over a fibre-optic network to a control system for
use in a feedback loop. The signal latency is determined
by the time taken for samples to pass through the filter
system, and is of order 1ms.
By combining the real-time calculated power values de-

scribed in the previous paragraph with knowledge of the
geometry of the sensors, it is possible to calculate mo-
ments of the emissivity profile, without having to do a full
tomographic inversion. The 0th and 1st order moments
give the average position and the size of the emission
respectively. This is particularly useful for the MAST-
U divertor, since optimising the size and location of the
emitting region will cool the plasma exhaust and help to
reduce the heat load on the divertor target. Some work
on an FPGA implementation of this processing has al-
ready been done8, though it has yet to be integrated into
the bolometer system.

III. INSTALLATION ON JET

The new electronics has been installed on the JET
tokamak, on 8 previously unused channels of the existing
vertical bolometer system. The lines of sight are shown
in Figure 2. Although represented by lines, each chan-
nel actually views a finite solid angle, extending half way
to the neighbouring channel, giving complete coverage of
the plasma. The same is true of the channels on the ex-
isting JET system, though there are more of these (24
vertical and 28 horizontal) with closer spacing and hence
narrower viewing angles. Some lines of sight are shared
between the existing system and the new system, mean-
ing it is possible to directly compare measurements from
the two systems, as long as the different viewing areas
are taken into account.
Figure 3 shows a comparison between two channels

with similar lines of sight. The new system does not have
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FIG. 3. Comparison of channel 3 of the existing JET system
(KB5V, dark blue) and channel 26 of the new system (KB5F,
light orange). Note that the zero point on the KB5F axis has
been shifted to avoid the two traces overlapping too closely.

a high gain amplifier like the old system, so the voltage
measurements are much smaller. However, it can clearly
be seen that the new system is in qualitative agreement
with the existing system. Furthermore, there is a higher
signal-to-noise ratio, despite the filters in the new system
being set to 1kHz bandwidth in this pulse, compared to
200Hz for the existing system. This demonstrates that
we can make higher bandwidth measurements without
compromising on signal quality.
To perform a quantitative validation of the new sys-

tem’s data, the measured voltage was used to calcu-
late the line-integrated intensity for each channel, I =
4πP/E, where P is calculated using Equation 1 and E is
the étendue of the sensor. The expected intensity mea-
surement can be obtained by integrating a tomographic
reconstruction of the emissivity profile along the chan-
nel’s line of sight. The tomographic reconstruction was
performed using only data from the existing JET sys-
tem, and the back-calculation was done additionally for
the new system. Figure 4 shows the result of this for
JET pulse 89548 at one of the time slices for which a
valid reconstruction was available. Channel 32 has been
omitted, since it was discovered upon installation of the
electronics that the in-vessel sensor for this channel is
broken. The measured and expected intensities are in
good agreement, with deviations in the new system com-
parable to those of the existing system. The agreement
of the new system with calculations using the existing
system’s data demonstrates that the new system has ac-
curacy comparable to that of the existing system.

IV. SUMMARY AND CONCLUSIONS

The new bolometer system which has been developed
for the MAST-U Super-X divertor has been described.
Improvements over existing bolometer systems include
the use of an FPGA to perform digital signal process-
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FIG. 4. Comparison of measured intensity and expected
intensity, back calculated from the emissivity profile. The
channels belonging to the new system (KB5F) are inside the
dashed lines. The vertical channels of the existing system are
on the left of the plot, and the horizontal channels are on the
right.

ing, a fast and automated calibration procedure and the
ability to calculate the power incident on the bolome-
ter sensors in real time. Future real time control appli-
cations have been discussed. The electronics have been
installed on the JET tokamak on 8 previously unused ver-
tical channels, and the system has been shown to produce
data in good agreement with the existing JET bolometer
system, but with a better signal-to-noise ratio, even at
higher bandwidth.
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