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Abstract 

Recent JET (ITER-Like Wall) experiments have shown that the fueling gas puffed from different locations of the 

vessel can result in different Scrape-Off Layer (SOL) density profiles and therefore different Radio Frequency (RF) 

coupling. To reproduce the experimental observations, to understand the associated physics and to optimize the 

gas puff methods, we have carried out three-dimensional (3D) simulations with the EMC3-EIRENE code in JET-ILW 

including a realistic description of the vessel geometry and the Gas Injection Modules (GIMs) configuration. 

Various gas puffing methods have been investigated, in which the location of gas fueling is the only variable 

parameter. The simulation results are in quantitative agreement with the experimental measurements. They 

confirm that compared to divertor gas fueling, mid-plane gas puffing increases the SOL density most significantly 

but locally, while top gas puffing increases it uniformly in toroidal direction but to a lower degree. Moreover, the 

present analysis corroborates the experimental findings that combined gas puff scenarios - based on distributed 

main chamber gas puffing - can be effective in increasing the RF coupling for multiple antennas simultaneously. 

The results indicate that the spreading of the gas, the local ionization and the transport of the ionized gas along 

the magnetic field lines connecting the local gas cloud in front of the GIMs to the antennas are responsible for the 

enhanced SOL density and thus the larger RF coupling.  

 

1. Introduction 

      Plasma heating with electromagnetic waves in the Ion Cyclotron Range of Frequencies (ICRF) is one of the most 

promising auxiliary plasma heating methods in magnetic controlled fusion devices. It has been successfully 

implemented in present-day tokamaks and stellarators and will be applied in future fusion machines such as ITER 

and DEMO. As the biggest tokamak in operation at present, Joint European Torus (JET) is equipped with a robust 

ICRF heating system - four 4-strap A2 ICRF antennas (powered per pair) and one ITER-Like-Antenna (ILA) - capable 

of providing a total radio frequency power of ~8.0 MW in ELMy H-Mode plasmas [1]. For ITER, the ICRF heating 

system being developed is designed to provide a total heating power of 20MW [2]. 

*See the author list of “Overview of the JET results in support to ITER” by X. Litaudon et al. to be published 

in Nuclear Fusion Special issue: overview and summary reports from the 26th Fusion Energy Conference 
(Kyoto, Japan, 17-22 October 2016) 
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      ICRF heating relies on the fast wave to transfer the Radio Frequency (RF) power launched from the antennas 

into the plasma. However, the ICRF power coupling depends critically on the width of the evanescent layer 𝑅𝑒𝑣𝑎𝑛 

in front of the launchers, namely on the distance between the fast wave cut-off density layer and the antenna 

straps [3]. The amount of ICRF power coupled to the plasma can be expressed as Pcoupled ∝ Vmax
2 Rc 2Zc

2⁄ , where 

Vmax is the anti-node voltage in the transmission line which is usually limited by arcing in it, Zc is the characteristic 

impedance of the transmission line. Given Vmax and Zc values, Pcoupled is only proportional to the coupling 

resistance Rc, i.e. Pcoupled ∝ 𝑅𝑐. The coupling resistance decreases exponentially with 𝑅𝑒𝑣𝑎𝑛, i.e. 𝑅𝑐 ∝ 𝑅0𝑒−𝛼∙𝑅𝑒𝑣𝑎𝑛, 

where 𝛼 is a tunneling factor that mainly depends on the antenna properties (e.g. phasing)  [4]. Thus, to ensure the 

best performances of the ICRF heating system, it is crucial to minimize this evanescent distance by increasing the 

plasma density in front of the antennas to a level above the fast wave cut-off density. In JET H-mode plasmas the 

fast wave cut-off density is typically 2.0 × 1018 m
-3 

for dipole phasing operation [5]. 

      The local Scrape-Off Layer (SOL) density can be tailored by changing the gas puff locations and the rate. 

Previous experiments and simulations indicate that the SOL density can be increased with main chamber (top or 

mid-plane) gas puffing instead of divertor gas puffing [5-10]. An increase by a factor two of ICRF antenna coupling 

was found for antennas close to the mid-plane gas valves. The location of the gas source does not affect (degrade) 

the plasma confinement in the studied range of gas rate [5]. The success of these experiments and simulations 

kindled the interest in enhancing ICRF coupling via local gas puffing in many tokamaks, such as ASDEX Upgrade 

(AUG) [7-9], DIII-D [11, 12], EAST, JET [5, 10], KSTAR, WEST, ITER and DEMO. For ITER, in particular, the width of the 

evanescent layer 𝑅𝑒𝑣𝑎𝑛 is larger than the one in present and past machines [10]. Moreover, the SOL density has 

large uncertainties in different plasma scenarios making it difficult to make accurate predictions of the total RF 

coupled power. It is thus extremely important to investigate how to tailor the SOL density in front of the ICRF 

antennas through the local gas puffing methods and to have a suite of numerical tools validated against present 

experiments.  

      This paper mainly concentrates on the numerical studies of deuterium gas injection from different locations in 

JET-ILW while various experimental data have been used for comparisons. Several aspects were considered to be 

important in describing accurately the gas puff experiments using numerical simulations. First of all, the 

simulations have to be 3D since local gas puffing induces toroidal and poloidal inhomogeneous densities in SOL. 

Second, the neutrals transport and ionization by electron impact and plasma transport have to be computed 

accurately in realistic geometries. Third, the main chamber plasma facing components have to be taken into 

account because they play an important role in generating the recycling fluxes and acting as boundary conditions. 

Fourth, the gas valves and gas pumps need to be described realistically. EMC3-EIRENE [13] is a 3D edge plasma 

fluid and neutral transport code which fulfills all the requirements mentioned above. The paper is dedicated to the 

applications of the EMC3-EIRENE simulations in JET. Note that no ICRF wave and plasma interaction effects are 

included in the EMC3-EIRENE code, and in particular no ionization induced by ICRF. To calculate the coupling 

resistances in different gas puffing scenarios, simulations via combining the EMC3-EIRENE simulations and the 

antenna code simulations are necessary. This only requires the import of the 3D density and temperature profiles 

from the EMC3-EIRENE simulations into the antenna codes. 

The aims of our study are to understand the recent JET experiments described in [5] and [10], to explore the 

related physics and to infer guidelines for future experiments. In addition, due to the various parameters available 

in the simulations and experiments, the EMC3-EIRENE simulations can be further validated against the JET 

experiments so as to gain confidences for quantitative simulations in ITER and other tokamaks. The results of the 

EMC3-EIRENE simulations in support to the AUG ICRF antenna experiments are described in [8]. 
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      It is worth mentioning that local gas puffing can, in addition to improving the antenna coupling, also decrease 

the impurity influxes from antennas [7]. During local gas puffing, the plasma density in front of the antennas is 

increased locally while the temperature is reduced. The increase of density can reduce the RF rectified sheath 

potential, which can lead to reduction of impurity sputtering from the antenna and its surrounding wall structures.  

      The paper is organized as follows. In section 2, the simulation setup is presented including the settings of the 

gas puff, the gas pump, the plasma facing components, the computational grid and the validations of the 

background plasmas. In section 3, the simulation results are discussed. These include the gas spreading from 

different Gas Injection Modules (GIMs), the neutral and electron densities both in poloidal and toroidal cross-

sections, the calculations of the ICRF coupling resistances, the mechanisms of gas puff effects on SOL density and 

ICRF coupling. In section 4, the combined gas puff scenarios are investigated. In section 5, conclusions and an 

outlook are given.  

 

2. Simulation setup 

      EMC3-EIRENE is a code package which self-consistently couples the Edge Monte-Carlo 3D plasma fluid code 

(EMC3) [13] and the kinetic neutral Monte Carlo code (EIRENE) [14]. EMC3 solves a set of time-independent 

Braginskii-like equations for mass, parallel momentum, electron and ion energy with anomalous transport 

coefficients. EIRENE is a Monte-Carlo solver of the Boltzmann equation for the neutrals. The parallel transport is 

treated purely neoclassically in EMC3 while the perpendicular transport coefficients D⊥ and χ⊥ are specified as 

free parameters. These free parameters can be derived through comparisons of the simulated plasma parameters 

with the experimental ones. Besides its wide applications in stellarators [15, 16], EMC3-EIRENE is also attracting 

extensive interest for its implementation in tokamaks where some 3D SOL physics aspects need to be accounted. 

For example, the code was applied to model ICRF antenna coupling experiments [6, 8], the influences of the 

Resonant Magnetic Perturbation fields [17], the 3D edge plasma convection [18] and the plasma-wall interactions 

[18, 19]. Note that drifts and volume recombination are not calculated in the present versions of the EMC3-EIRENE 

code. It is worth mentioning that progresses have been made in applying prescribed drifts in the code [18]. These 

prescribed drifts can be any drifts while they have to be calculated in advance and read as input fields.  

      Before running our simulations, it is important to first build a realistic simulation model. The layout of the JET 

torus is illustrated in figure 1, including the main wall structures, the Gas Injection Modules (GIMs) and the 

locations of the key density measurements. A toroidal 360
o
 computation grid is built based on the EFIT equilibrium 

[20] from discharge #84476 at 50.0s (see figure 2 and 3). Toroidally, the computational grid is composed of sixteen 

equally constructed segments and each segment is divided into sixteen parts. The JET vacuum vessel is divided 

toroidally into eight octants, thus two segments in our simulations are used to represent one octant. A further 

increase of the toroidal resolution of the grid results in a noticeable increase of the Monte Carlo noise (both in 

EMC3 and EIRENE). In the following, 0
o
 is set at the boundaries of octant one and octant eight. In the poloidal 

cross-section, the grid is divided into the core, SOL and Private Flux Region (PFR). In the SOL the grid resolution is 

39×481×256 (radial×poloidal×toroidal) cells. A relative high resolution is specified in the regions with physics of 

interest: the divertor and the outer mid-plane regions in front of the limiters. In addition to the EMC3 grid, the 

EIRENE grid includes an ‘additional region’ (figure 2, in yellow color) bounded by the vessel wall so that the neutral 

transport inside the whole vessel can be calculated. A toroidally symmetric gas pump (cryo pump) is set at its 

actual position. The reflection coefficient of the pump surface is set as 0.98, meaning that 2% of the neutrals 

hitting the pumping surface are absorbed while the rest is reflected. With this setting, the gas pump rate is equal 
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to the gas puff rate (1.7×10
22

 el/s) and the electron density matches the experimental one in our simulations. Two 

neutral baffles (the purple dashed lines in figure 2) are set in regions outside the divertor. This is to make the 

neutral transport in those regions as realistic as possible. In reality hardly any gas can pass through the locations of 

the neutral baffles. 

      In steady state JET H-mode plasmas, the recycling fluxes from the divertor and main chamber wall are the 

primary particle sources. In particular, the limiters in the low field side have strong interactions with the plasma. 

They play a crucial role in confining the plasma and generating recycling fluxes. Thus, all these limiters including 

eight Wide Poloidal Limiters (WPLs), two ITER-Like-Antenna (ILA) limiters and one Narrow Poloidal Limiter (NPL) 

are taken into account in our simulations (see figure 3). The different types of limiters have different widths and 

different radial positions. As a result they will induce toroidal inhomogeneities in the SOL. This will be discussed 

later in more detail. The toroidal axisymmetric plasma facing components in our model include the inner and outer 

targets and the roof baffle. Because the inner limiters (those on the high field side) are identical and axisymmetric, 

the inner wall is placed at the same location as the leading edges of these inner limiters. For the wall materials, 

tungsten (W) and Beryllium (Be) corresponding to the divertor and main chamber wall respectively, are used in our 

simulations. No sputtering is included in the simulations, the use of different wall materials affects the reflection 

model in EIRENE. 

      The simulation strategy is as follows. First, a reference pulse with symmetrical divertor gas puffing is simulated, 

and in particular transport parameters are adjusted to match the measured profiles of ne, Te and divertor 

saturation current. This validated plasma is then assumed as background plasma, and it is used in the simulations 

to study the changes in the SOL when puffing gas from other locations, for example at specific toroidal locations at 

the outer mid-plane or at the top of the vessel. 

      Our divertor reference is the JET pulse 84476 where the divertor GIM11 was used. The separatrix averaged 

density is 2×10
19

 m
-3

 and the net input power is 14MW, Pnet=PNBI+PICRH+POH -Prad. These two parameters are derived 

from experimental measurement and they are regarded as inner boundary conditions. Note that experimentally 

these parameters remained unchanged when further using top or mid-plane gas puff. Because no impurities are 

considered in our simulations, the power radiated by impurities has been subtracted from the total heating power 

to evaluate the net power. For the discharges considered in our studies, Bt=2.7T, Ip=2.5MA, Prad=6MW and the 

minimum distance from the separatrix to the wall is 6cm. To correctly describe the cross-field transport of the 

plasma, the upstream and downstream profiles in our simulations are best matched to experiments by adjusting 

the perpendicular plasma transport parameters (i.e. the so-called ‘free parameters’ mentioned above). The results 

of this procedure are shown in figure 4. The upstream profiles include the mid-plane electron density ne and the 

mid-plane electron temperature Te. The downstream profiles include the particle flux to the divertor targets jsat 

(the outer strike point is located on the right bottom of the divertor). The perpendicular transport parameters 

include the particle and heat diffusion coefficients D⊥ and χ⊥, in which χi⊥ = χe⊥ = χ⊥. For the experimental data, 

we have selected the values during the full inter-ELM periods. The averaged mid-plane ne is obtained with the 

following procedures: the core and pedestal density are derived from High resolution Thomson Scattering (HRTS), 

and the SOL profiles are derived from the reflectometer (more than 2700 reflectometer profiles are used in this 

averaging procedure). The density data are averaged over the time 49.5-50.5 s. The mid-plane Te is averaged from 

the HRTS data and is only reliable in the plasma core and in the near SOL. In the far SOL, the measured Te with 

HRTS has large error bars. The particle fluxes to the divertor targets jsat are measured with Langmuir probes. jsat is 

equal to the current (i.e. the particle stream) in a flux tube divided by the area perpendicular to that flux tube.  
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3. Simulation results 

       Once the background plasma is defined, the gas source is switched from the divertor to the main chamber (top 

or mid-plane) of the machine in our simulations. All other parameters, including the total gas puff rate 1.7×10
22

 

el/s, are kept unchanged. The JET pulses studies using this procedure are listed in table 1. 

 

3.1  Gas puff effects on the edge plasma 

      After running the simulations for all the cases, the simulated neutral and electron densities during gas puffing in 

the divertor, top and mid-plane are shown in figure 5. nD2, nD and ne represent the deuterium molecular density, 

the deuterium atom density and the electron density, respectively.  In each case, the poloidal cross-section is taken 

at the toroidal position where the GIM is located. In our simulations, the GIMs are either set at the realistic 

positions or set in such a way that the simulated gas is equivalent to the experimental one (in terms of the 

spreading and intensity of the gas). For the top gas puff (GIM7 or GIM8), eight poloidally evenly distributed point 

sources in the top of the vessel are used to inject the same amount of gas as in the experiment. We have used 

eight point sources so that the poloidal distribution of the gas is homogeneous enough. For the divertor gas puff 

(GIM11), eight toroidally evenly distributed point sources have been set at the realistic divertor positions to 

generate the experimental equivalent gas. The settings of the mid-plane GIMs (GIM3, GIM4 or GIM6) are more 

complicated. This is because the mid-plane GIMs are located very deep in the so called A-port. They are far away 

from the main chamber and are outside our simulation domain. As the gas is transported radially inward from the 

GIM, it keeps spreading poloidally and toroidally filling essentially the whole A-port. A rather homogenous gas is 

found at the cross-section where the A-port is connected to the main chamber. To simulate this inside the vessel, 

we have put five point sources distributed equidistantly in poloidal direction (~ 50cm away from the seperatrix) at 

the outer mid-plane to simulate the experimental gas puff as realistically as possible. Before the gas reaches the 

hot plasma and is ionized, it has already spread to a rather large extent. At the leading edge of the limiters, the 

spreading of the gas is in the range of [-0.85m, 0.85m] poloidally and about ten degrees toroidally (depending on 

the wall structures nearby). These features are well captured in our simulations. The setup procedure of the JET 

mid-plane GIMs in our simulations is similar to the one implemented in AUG (see [8]) but more sophisticated. In 

AUG only one mid-plane GIM is needed to generate the experimental equivalent gas. 

      To verify the simulated mid-plane gas, comparisons of the simulated gas pressure and the experimental one are 

made for the mid-plane gas puff case (GIM4) (figure 6). It is shown that the maximum value of the gas pressure 

(gas pressure at the toroidal position of the GIM) and the toroidal distributions of the gas pressure are well 

reproduced in our simulations. The local gas pressure increases (the small peaks) are due to the local recycling at 

the limiters. The quantitative agreements of the gas pressure confirm that the settings of the mid-plane GIMs in 

our simulations are reasonable. 

      According to our simulation results (figure 5), a neutral density cloud localized in front of the top or mid-plane 

GIMs develops during the corresponding gas puff. As the gas cloud interacts with the plasma, it is ionized locally 

when the electron temperature is larger than the threshold ionization temperature (~2eV). The neutral ionization 

rate depends nonlinearly on the electron temperature [21]. The complex ionization processes are calculated in 

EIRENE based on the AMJUEL/HYDHEL database and an electron density cloud is formed in front of the GIMs 

where the ionization happens. The cloud of enhanced density can be seen in figure 5 (right column). The extension 

of the density cloud mostly depends on the spreading of the neutral gas while the peak density largely depends on 

the ionization rate. In the density cloud, the electron temperature is lower than the background plasma 

temperature. Due of the rapid motion of charged particles along field lines (i.e. the parallel transport), density in 
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regions which are magnetically connected to the density cloud are soon enhanced. The density increase in the SOL 

depends on the structures of the field lines, on the density cloud as well as on the perpendicular transport. If these 

field lines spread widely, the high density source is shared by a large region so that the increase of density is global 

but not substantial; if the field lines remain close to each other over a long distance, the density increase can be 

significant but more local.  

      Furthermore, we have compared the experimental and simulated electron density for the divertor (GIM11) and 

mid-plane (GIM4) gas puff cases (figure 7). The comparisons are made at the reflectometer position, i.e. toroidally 

at φ = -52.5
o

 and vertically at the plasma outer mid-plane. Only the reflectometer data during the inter-ELMs 

phases is used. Quantitative agreement is found between the simulated and experimental density profiles. A 

match within 95% is seen during divertor gas puffing. Small differences in the limiter shadow and in the near SOL 

are observed during mid-plane gas puffing. Nevertheless these differences are still within the experimental error 

bars. This good agreement further confirms that the settings of the mid-plane GIMs in our simulations are 

reasonable, and gives us confidence that our simulations are able to reproduce the experiments at the quantitative 

level.  

      To understand the toroidal density distribution, toroidal cross-sections of the density profile at the outer 

mid-plane (z=0.3m) are shown in figure 8 for the divertor (GIM11), top (GIM7) and mid-plane (GIM4) gas puff cases. 

In this figure the toroidal positions of the ICRF antennas (in green color) and GIMs (white dashed lines) are also 

indicated. The orange line represents the position of the fast wave cut-off density during divertor gas puffing and is 

used as reference. The red line is the position of the fast wave cut-off density during top or mid-plane gas puffing 

for dipole (out-of-phase) phasing operation.  

      It can be seen from the simulations that during divertor gas puffing (GIM11), the electron density in the near 

SOL is quite uniform while a toroidal inhomogenous density is found in the far SOL. This is due to the effects of the 

limiters. For instance the limiters near antennas A and B are NPL and ILA limiters. They are narrower and radially 

further retracted than the WPLs. Consequently the density in front of antennas A and B is higher than the ones in 

other toroidal positions.  

      Compared to the divertor gas puff, the top gas puff (GIM7) increases the density almost uniformly in the 

toroidal direction but to a small extent. The density increase in front of antennas A and B is slightly larger than that 

in front of antennas C and D, which is again due to the effects of the limiters. While changing the top gas puff 

locations, for instance when switching from GIM7 to GIM8, the SOL density increase remains the same. This 

suggests that the density increase during top gas puffing is independent from the toroidal positions of the top 

GIMs. During mid-plane gas puffing, the density increase in the SOL is significantly larger but very local. The largest 

density increase is found in regions close to the outer mid-plane GIMs. This large density increase gradually 

vanishes as one moves away toroidally from the GIM. These findings are consistent with the findings in AUG[8] and 

JET-ILW [5] experiments. 

      To have a more accurate description of the density increase in front of the antennas, we have compared the 

average density in front of the antennas for all the gas puffing scenarios (figure 9). The density is averaged on the 

flux surfaces and then mapped to the mid-plane. It is calculated with the formula 

0 0

0 0

2 2

- 2 - 2

1
( ) ( , , )e en n d d

 

 
   



  

  
  
   

, 



7 

 

in which 𝜃0 and Φ0 represent the poloidal and toroidal angles of the antenna center, ∆𝜃 and ∆Φ are the poloidal 

and toroidal angle extensions of the antenna, respectively. 
( )en 

 is then transformed to 
( )en R

 at the 

mid-plane (Z=0.3m). Our results indicate that the mid-plane GIMs are most effective in increasing the density for 

the antennas nearby. For instance GIM4 is nearest to antenna A and the largest density increase is found in front 

of antenna A. GIM3 is located in the middle of antennas C and D, thus the density in front of these two antennas 

increase substantially. The top gas puff (GIM7) increases the density for all the antennas to an almost similar but 

small level.  

      In JET, the distance from the leading edge of the limiter to the antenna strap is about 5cm. Thus, even though 

the position of the cut-off density is behind the leading edge of the limiters during divertor gas puffing, there is still 

a considerable distance between the position of the cut-off density and the antenna straps. The main chamber gas 

puff can change the density gradient and the evanescent distance in the limiter shadow, which will lead to an 

increase of the ICRF power coupling. 

 

3.2  Gas puff effects on ICRF coupling 

      As discussed in the introduction, the ICRF coupling depends critically on the SOL density in front of the 

antennas. Different gas puffing methods can result in different SOL density and hence different ICRF coupling. To 

understand the impact of the density modifications when using different gas puffing scenarios on the ICRF coupling, 

a simple 1D fast wave RF coupling code [10] was used. The code computes the 1D RF electric fields for a given 

density profile using Stix’s cold dielectric tensor for the fast wave [3] and the coupling resistance is estimated by 

calculating the poloidal averaged Poynting flux integral at the plasma edge PRF (i.e. the coupled RF power) for a 

given current density IA at the antenna, i.e. 𝑅𝑐 = 2𝑃𝑅𝐹 𝐼𝐴
2⁄ . Because of its oversimplified geometry (infinitely 

poloidally long straps, uniform current density, no feeders, no slow waves, etc.), this code does not provide 

accurate values of the RF coupling resistance itself, but the relative coupling changes due to the SOL density 

modification are believed to be satisfactorily captured.    

      The 3D densities from the EMC3-EIRENE simulations were poloidally averaged within the range 

[Zmin, Zmax]=[-0.6m, 0.6m]. The 1D density profiles in front of each antenna strap (at a given toroidal position) were 

used in the coupling calculations. After obtaining the Rc values from the 1D coupling code for different toroidal 

positions and various gas puffing cases, the Relative Change of Coupling Resistance (RCCR) is then calculated with 
Rc−Rc0

Rc0
 (i.e. 

ΔRc

Rc_ref
, where Rc_ref = Rc0 and ΔRc = Rc − Rc0). Here Rc0 is the coupling resistance during divertor gas 

puffing and used as a reference value. Good agreement is found between the simulated and experimental RCCR 

values (figure 10). In the experiment, Rc can only be measured at the toroidal positions of the antennas. In our 

simulations, we have used 32 density profiles with toroidal distance ~0.7m between each other (some of these 

toroidal positions are a little shifted to avoid the positions of the limiters) for the Rc calculations of an hypothetical 

antenna at these toroidal positions. This gives how RCCR varies with the toroidal position. The simulations (figure 

10) indicate that during top gas puffing, Rc is increased everywhere by an almost same moderate value (by ~40%). 

The small variations of the RCCR values in the toroidal direction are due to the effects of the limiters (see figure 8). 

During mid-plane gas puffing, Rc is increased most significantly for antennas near the GIMs (as much as by 130% in 

experiments). It decays exponentially as the GIM-strap distance increases. Quantitative agreement is found 

between the experiments and simulations when the GIM-strap distance is smaller than 3m. However, the 

simulated RCCR curve decays more slowly than the experimental one. Many reasons can be responsible for this: 1. 
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no drift is included in the EMC3-EIRENE code; 2. the simplified antenna geometry and reduced physics in the 1D 

antenna code; 3. the errors in the experimental data which is used for validating the background plasma (section 

2); 4. errors of the experimental Rc values; 5. the simplified wall structures in the EMC3 simulations; 6. the 

imprecise settings of the transport parameters in our simulations; 7. local ionization effects due to the large RF 

fields close to the antennas that are not included in the simulations [22]; 8. radiation patterns from impurities and 

plasma; 9. plasma-wall interaction (sputtering, reflection on metallic wall versus carbon wall). 

      To understand the influence of the transport parameters on the RCCR values, further EMC3-EIRENE simulations 

are carried out with different particle transport parameters specified in the far SOL (case A: 𝐷⊥ = 6 𝑚2 𝑠⁄ ; case B: 

𝐷⊥ = 3 𝑚2 𝑠⁄ ; case C: 𝐷⊥ = 9 𝑚2 𝑠⁄ ). In each case the divertor (GIM11), top (GIM7) and mid-plane (GIM4) gas puff 

scenarios are investigated. Note that case A is the same as that in sections 3 and is used as a reference. The results 

(figure 11) indicate that compared to case A, a lower 𝐷⊥ in the far SOL (case B) results in a higher SOL integrated 

density and an upward shift of the RCCR curve, while a higher 𝐷⊥  in the far SOL (case C) results in a lower SOL 

integrated density and a downward shift of the RCCR curve. The RCCR decay lengths in these cases are almost the 

same while the magnitudes of the RCCR values are different. This indicates that the 𝐷⊥ values can have an impact 

on the magnitude of the RCCR values with higher local density increase when perpendicular transport is reduced, 

but not on the toroidal decay length of the SOL density. 

      Moreover, it is found that the calculated Rc is roughly proportional to the integrated SOL density 
2 2

0 0
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R

eSOL
R

n n R RdRd d
 

    
 in front of the antenna (figure 12). The integrated SOL density thus depends on 

the SOL density profiles n(R) and the width of the SOL. In our calculations the width of the SOL is fixed because the 

same equilibrium is used in all cases. Thus the integrated SOL density is only determined by the SOL density 

profiles. Changes in the plasma geometry (shape, strike-point position, etc.) will likely lead to different slopes of 

the Rc vs. neSOL diagram but a linear dependence is still expected, unless the SOL density gradients are too strong 

and start to play a dominant role in the RF coupling properties.   

      The field line tracings starting from the top and mid-plane gas clouds to the ICRF antennas are shown in figure 

13. Field lines starting from the top toward the mid-plane spread widely. This explains the evenly distributed 

toroidal density increase during top gas puffing. In contrast, field lines starting from the mid-plane toward the top 

are much more concentrated. This is the reason for the significant but localized density increase during mid-plane 

gas puffing. Although field line tracing is useful for a first hint for the regions of enhanced density, it is far from 

enough. This is because other factors mentioned above are not taken into account, such as the spreading of the 

neutral gas, the spatially nonlinear ionization and the complicated field line structures in the SOL. In ITER, the GIMs 

are located in the outer top of the vessel and are far away from the main chamber. The gas has to go through the 

gaps between the wall modules to reach the plasma. To have a correct prediction for the density at the ICRF 

antenna, comprehensive EMC3-EIRENE simulations that take into account the 3D equilibrium and an accurate 

description of the wall components and of the geometry / location of the various GIMs are necessary.  

 

4. Further studies 

      The top or mid-plane gas puff scenarios described previously are all with local gas using a single GIM. Because 

the RF antennas are toroidally distributed in JET-ILW and AUG, the maximum RF power capability is obtained when 

using distributed main-chamber gas fueling to homogeneously enhance the plasma density in front of the antenna 

and thus the coupling resistance of all antennas. This technique has proved very effective in JET-ILW [23] but some 
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unexpected effects - such as the synergy between simultaneous main chamber fueling on the SOL density 

modifications - have been observed. To further interpret these observations, in this section the combined gas puff 

method -- puffing with several main chamber GIMs simultaneously -- are investigated. The following cases are 

simulated: I. Two top GIMs, GIM7 (50%)+GIM8 (50%); II. Two mid-plane GIMs, GIM4 (50%)+GIM6 (50%); III. Two 

mid-plane GIMs and one top GIM, GIM4 (33%)+GIM6 (33%)+GIM8 (33%). The total gas puff rate in all these cases 

is equal to 1.7×10
22

 el/s. The gas puff rate of each GIM is shown as percentage of the total one.  

      Similar to section 3, the toroidal cross-sections of the density and the averaged density in front of the antennas 

are shown in figure 14 and figure 15, respectively. It is shown that the density increase with two top GIMs 

(GIM7+GIM8) is similar to that with only one top GIM (GIM7 or GIM8). This is reasonable because the density 

increase is independent of the top GIMs. The combined two mid-plane GIMs (GIM4+GIM6) can largely increase the 

density both in front of antennas A and B, while the density in front of antennas C and D is increased by a much 

smaller degree. This is because GIM4 is closest to antenna A and GIM6 is closest to antenna B while these two 

GIMs are both far away from antennas C and D. Compared to the single mid-plane gas puff with GIM4, the density 

increase in front of antenna A is less significant. This is because only half of the gas is used for GIM4 (the other half 

is for GIM6). As for the combined mid-plane and top gas puff (GIM4+GIM6+GIM8), the density increase in front of 

antennas A and B is less than case II but larger than case I while the density increase in front of antennas C and D is 

almost the same for all the three cases. 

      These simulations show that the combined gas puff can be effective in increasing the SOL density globally. Thus, 

if good coupling for antennas A and B and ILA are required at the same time, it is best to use GIM4+GIM6; if good 

coupling both for antennas C and D is desired, one should use GIM3; if good coupling for all the antennas is needed, 

the best solution would be GIM3+GIM4+GIM6. 

 

5. Conclusions and outlook 

      In continuation of a previous study for AUG [8], realistic and comprehensive gas puff simulations were carried 

out in JET-ILW with the 3D edge plasma fluid and neutral particle code EMC3-EIRENE. In the simulations, we have 

implemented grid with 360
o
 toroidal extension and included all the essential plasma facing components, the Gas 

Injection Modules (GIMs) and the gas pump. Various gas puffing scenarios including the local gas puff and the 

combined gas puff are investigated. Our simulated electron density and neutral pressure are in quantitative 

agreement with the experimental ones. The simulations confirm that during mid-plane gas puffing, the edge 

density is increased most significantly but locally. The largest ICRF coupling increase (~130%) is found for the 

antenna nearest to the mid-plane GIM, and this increase gradually decays with the toroidal distance of the 

antenna to the gas injection point. 1D RF coupling calculations that use the local density profiles computed by 

EMC3-EIRENE in front of the antennas indicate that the toroidal decay of the RCCR is lower than what was 

observed in the JET-ILW experiments. The perpendicular particle transport coefficient is shown to have an 

influence on the magnitude of the RCCR values but not on its toroidal decay length. It is suspected that factors 

such as the lack of drifts in the EMC3-EIRENE code and the simplified physics in the 1D RF coupling code are 

responsible for this difference. During top gas puffing, the edge density increase is almost toroidally uniform but at 

smaller magnitude. An almost equal and moderate ICRF coupling increase (~45%) is found for all the antennas with 

top gas puffing. 

      Our results also indicate that the enhanced SOL density and ICRF coupling are due to the spreading of the 

injected gas, the local ionization and the magnetic connections from the gas cloud to the antennas. Local ionization 
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effects due to large RF-fields close to the antenna structures were not included in the simulations. To ensure the 

best ICRF coupling efficiency, using GIMs which can generate local gas magnetically connected to the antennas is 

important. The simulations also confirm that combined gas puff can be effective in increasing the SOL density and 

the ICRF coupling globally.  

      The validation of 3D simulations with the EMC3-EIRENE code and the experimental results in AUG [8] and 

JET-ILW make us confident that similar simulations can be carried out for ITER and other tokamaks. Moreover, the 

recent experimental and numerical studies of the ITER-like gas puffing scenarios in AUG can shed some lights on 

the behavior of the ITER gas and its effects on the SOL and ICRF coupling. We plan to do similar simulations for 

ITER and DEMO in the near future. 
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Simulated cases Gas valve positions 

(toroidal) 

Corresponding 

experiments 

Gas puff rate 

Divertor gas  puff GIM11 Toroidally evenly 

distributed 

#84476, #84485, 

#90140 

1.7×10
22

 

electrons/s 

Top gas puff GIM7 φ = -137.5
o
 #84739 

GIM8 φ = -45
o
 #84740 

Mid-plane gas puff GIM3 φ = -135
o
 #90131, #90133,  

#90136, #90137 

GIM4 φ = 0
o
 #84478, #90128,  

#90129, #90130 

GIM6 φ = 108
o
 #84477 

Table 1. The simulated cases in parallel with the experiments.  

 

   

Figure 1. (a) Top view of JET illustrating the toroidal locations of the plasma facing wall components, the GIMs and 

the key density diagnostics; (b) poloidal cross-section of JET shows the gas route puffed from different GIMs. 

Figure reproduced from [5]. 

http://w3.jac.jet.efda.org/cgi-chain/pulse_web/pulse_web?PulseNo=90140
http://w3.jac.jet.efda.org/cgi-chain/pulse_web/pulse_web?PulseNo=90131
http://w3.jac.jet.efda.org/cgi-chain/pulse_web/pulse_web?PulseNo=90133
http://w3.jac.jet.efda.org/cgi-chain/pulse_web/pulse_web?PulseNo=90136
http://w3.jac.jet.efda.org/cgi-chain/pulse_web/pulse_web?PulseNo=90137
http://w3.jac.jet.efda.org/cgi-chain/pulse_web/pulse_web?PulseNo=90128
http://w3.jac.jet.efda.org/cgi-chain/pulse_web/pulse_web?PulseNo=90130
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Figure 2. A poloidal cross-section of the EMC3-EIRENE computation grid. 

 

 

Figure 3. 3D structure of the computational grid, the limiters and the antennas. 
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Figure 4. Matching the background plasma parameters with experiments: (a) perpendicular plasma transport 

coefficients D⊥ and χ⊥; (b) comparisons of mid-plane electron density, the error bars correspond to the statistical 

dispersion of the reflectometry data; (c) comparisons of mid-plane electron temperature; (d) comparisons of 

particle fluxes to the divertor (around the outer strike point in the roof baffle). 
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Figure 5. Poloidal cross-sections of the neutral density (nD2 for molecular and nD for atom) and electron density (ne) 

during divertor, top and mid-plane gas puffing, respectively. The poloidal cross-sections are chosen at toroidal 

positions where the GIMs are located. 
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Figure 6. Comparisons of simulated and experimental gas pressure during mid-plane (GIM4) and divertor (GIM11) 

gas puffing. The pressure measurements are made in the A2 antennas in-vacuum transmission lines (un-pumped). 

 

 

Figure 7. Comparisons of simulated and experimental density (measured with reflectometer) for mid-plane (GIM4) 

and divertor (GIM11) gas puffing.  DIV11 means divertor puffing with GIM11 and MID4 means mid-plane puffing 

with GIM4. 
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Figure 8. Toroidal cross-sections of the electron density in the outer mid-plane for the divertor, top and mid-plane 

gas puff cases. The yellow solid line is the position of cut-off density for divertor gas puffing and reported in the 

second and third subfigures as reference line. The red solid-line is the position of cut-off density for top or 

mid-plane gas puffing. 
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Figure 9. The calculated average density in front of the ICRF antennas for the divertor (GIM11), top (GIM7) and 

mid-plane (GIM3 and GIM4) gas puff cases. ICRFA means ICRF antenna A. 

 

 

Figure 10. Relative Change of Coupling Resistances (RCCR) vs. GIM-antenna strap distance. For the calculated RCCR 

values, because they are largely symmetry along phi=0
o
, only those in the toroidal range [0, 180

o
] are shown in the 

figure. The experimental RCCR values are reproduced from [10]. Left: RCCR during mid-plane gas puffing, in which 

the dashed line is a fit of the experimental data. Right: RCCR during top gas puffing. 
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Figure 11. Influences of the particle transport coefficient D⊥  on the ICRF coupling. Left: particle transport 

coefficients in the three cases investigated; right: the corresponding relative change of coupling resistances. 

 

 

Figure 12. Measured coupling resistance vs. integrated SOL density.  
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Figure 13. Field line tracings starting from the top gas cloud (points A1, A2, A3 and A4, toroidal angle=-45
o
) and 

mid-plane gas cloud (points B1, B2, B3 and B4, toroidal angle=0
o
), respectively. 
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Figure 14. Toroidal cross-sections of the electron density in the mid-plane for combined gas puffing scenarios. 

 

Figure 15. Averaged density in front of the antennas for combined gas puffing scenarios. 


