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Abstract. This paper describes a new method to derive, from Soft X-Ray
(SXR) tomography, robust estimates of the core displacement, growth rate and
frequency of a 1/1 sawtooth crash precursor. The method is valid for very peaked
Soft X-Ray profiles and is robust against both the inversion algorithm and the
presence of tungsten in a rotating plasma. Three typical ASDEX Upgrade crashes
are then analysed. In all cases a postcursor is observed, suggesting incomplete
reconnection. Despite different dynamics, in all three cases the growth rate of
the core displacement shows similar features. First, it is not constant, supporting
the idea of non-linear growth. Second, it can be divided into clearly identified
phases with quasi-constant growth rates, suggesting sudden change of growth
regime rather than smooth transitions. Third, its evolution is non-monotonic,
with phases of accelerated growth followed by damped phases. This damping is
interpreted for two cases respectively as an effect of fast ions and of mode coupling,
based on the result of a MHD simulation. The mode frequency is observed in all
cases to be closely related to the plasma bulk rotation profile, with little or no
visible effect of the electron diamagnetic drift frequency. The onset criterion could
not be clearly identified and it is shown that the role of the pressure gradient is
not as expected from a naive extrapolation of the linear stability theory.
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1. Introduction

In a typical tokamak plasma, the electron tempera-
ture and density profiles are peaked on the magnetic
axis and monotonically decreasing to the plasma edge.
Plasma performance is determined mostly by the max-
imum value and the gradients of these profiles. In 1974,
it was discovered that a quasi-periodic relaxation phe-
nomenon could flatten these profiles in a region around
the plasma core [1]. It was visible on the time traces of
Soft X-Ray (SXR) signals in the form of a sawtooth-
like oscillation and the community labelled it ”saw-
tooth crashes” or ”internal disruptions” [2].

The profile relaxation associated to sawtooth
crashes, which were later confirmed to be quite com-
mon on tokamaks, typically affects a central region de-
limited by the mixing radius, which is slightly larger
than the q=1 surface (when it exists), where q is the
safety factor (the ”winding” of the magnetic field lines),
typically monotonically increasing from the center to
the edge. This region can include up to half the total
plasma volume, as expected on ITER [3], thus periodi-
cally affecting the plasma perfomance. Moreover, saw-
tooth crashes can trigger other dangerous instabilities,

like Neo-classical Tearing Modes (NTMs) that degrade
the plasma confinement by flattening the current pro-
file [4, 5, 6]. Consequently, significant efforts have been
put into understanding this phenomenon over the past
decades. Sawtooth crashes are typically preceded by a
displacement of the old core of the plasma [1, 7, 8, 9],
shortly before the crash itself. This displacement re-
sults from a (m/n) = (1/1) MHD instability refered to
as a ”sawtooth crash precursor”.

The exact processes behind sawtooth crashes and
precursors remain unclear. Several models were pro-
posed over the years. Some models proposed for ex-
ample a fast change in the magnetic topology via full
magnetic reconnection of a resistive m/n = 1/1 mode
[8, 10, 11], the formation of plasmoids in the tearing-
unstable reconnection layer that then coalesce into a
secondary island [12], or a transition from quasiperi-
odicity to stochasticity in the plasma center [13, 14, 15].

All these approaches have been confronted to ex-
perimental measurements that contradict or validate
them. One of the difficulties with sawtooth crashes
lies in the apparent diversity of the experimental phe-
nomenology and on the diagnostics limitations. This
diversity, the measurement uncertainties, and the diffi-
culty to identify a universal sawtooth crash model ex-
plain why the crash nature, its onset mechanism and
its driving process still escape consensus to this day.

Part of the answer could lie in the possibility that
several processes are indeed possible, and that differ-
ent plasma conditions make one or another dominant
at a given time, possibly with very subtle thresholds.
This could reconcile antagonist observations from dif-
ferent tokamaks and explain why the sawtooth precur-
sor characteristics ”can vary significantly even from one
sawtooth event to the next, while the basic discharge
parameters have hardly changed” [16].

With this diversity in mind, we propose an ap-
proach consisting in a systematic quantitative charac-
terisation of a large number of sawtooth crash precur-
sors corresponding to various plasma configurations.
This way, it is hoped that general trends can be iden-
tified robustly. This requires a clearly defined method
and its systematic application to a large database.
Such characterisation of sawtooth crash precursors can
be achieved via SXR tomography, which can give ac-
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cess to an estimate of the core displacement.

This paper is the first step of this approach: it
presents and details a robust method and evaluates
its reliability in realistic conditions. It then uses this
method to underline, in 3 typical cases, that the precur-
sor growth rate does not necessarily undergo a mono-
tonic increase up to the crash. Possible explanations
are discussed in each case. Results drawn from a larger
database will be treated in a separate article.

This article is structured as follows: section 2
shows that the displacement and growth rate of 1/1
modes can be robustly retrieved by SXR tomogra-
phy, provided that the SXR profile is peaked and
that the growth rate is not larger than the mode fre-
quency. Some key parameters used to characterise
sawtooth precursors and allow direct comparisons are
quantitatively defined in section 3. In section 4 this
method is applied to three typical but different pre-
cursors. It is shown that the growth rate behaviour
is not monotonic and can be approximated as a set of
well-identified phases with quasi-constant growth rate.
Also, all three cases show postcursor oscillations com-
patible with incomplete reconnection, itself compatible
with both plasmoids [12] and stochasticity interpreta-
tions [15].

This work is the continuation of an effort initiated
in [17], with an improved method, stronger justfication,
more technical details and more in-depth analysis of
particular cases.

2. Deriving the core displacement from SXR
tomography for peaked profiles

Several diagnostics can be used to monitor a sawtooth
crash precursor, and some interesting results have been
produced thanks to ECE [18, 19, 20, 21] or 2D ECE
imaging [18, 22, 23], thanks to reflectometry via 2D
density rotational tomography [24], or thanks to po-
larimetric measurements, which give access to line-
integrated electron density and perturbed magnetic
field [9], from which central current density can be de-
rived [25]. Magnetic measurements or interferometry
can also be used.

Nevertheless, all these diagnostics have limita-
tions. In particular, the electron temperature, which
gives the most direct access to magnetic structures (due
to fast heat conduction along field lines), is not always
accessible up to the plasma center (due to cut-off),
automatically excluding shots with too high density.
As for 2D ECE, it only reveals its full potential when
the displaced core passes through its viewing window,

which limits the accessible cases. Core polarimetric
measurements are not always available and, like 1D
ECE and interferometry, they miss the bidimensional
dynamics of precursors. Rotational tomography from
reflectometer data was not possible on the presented
AUG discharges. Finally, magnetic measurements are
located at the plasma edge, so core mode signals have
to be corrected for mirror currents [26], toroidal mode
coupling [27, 28] and decay [21].

The use of SXR tomography, already advocated
for precursor studies in [2, 8], is thus complementary
to the previous diagnostics, thanks to its 2D nature
and the fact it is virtually always available. In partic-
ular, the SXR diagnostics of ASDEX Upgrade, which
benefits from excellent geometrical coverage and rela-
tive calibration, is a very good option for a systematic
study in various plasma conditions since it catches the
2D structure of 1/1 modes with a good time resolution
(up to 2 MHz).

However, in tokamaks where tungsten is used as
a plasma facing material, the plasma gets polluted by
small concentrations of W which, due to the strong ra-
diative properties of this element [29], are sufficient to
radiate large amounts of energy out of the plasma core.
In particular, the SXR radiation on ASDEX Upgrade
is typically dominated by W. Additionaly, the use of
NBI heating, which transfers a lot of momentum to the
plasma (resulting in toroidal velocities up to 100-200
km/s in AUG), and thus accumulates W on the Low
Field Side (LFS) [30, 31], or of off-axis ICRH, which ac-
cumulates W on the High Field Side (HFS) [32, 33, 34],
mean that SXR emissivity can be poloidally asymmet-
ric and can no longer be considered as a flux-surface
quantity. Hence, particular care must be taken as the
SXR maximum does not necessarily match the mag-
netic axis.

In the following, the SXR diagostics of ASDEX
Upgrade and the general principles of tomography are
briefly introduced, focusing on the main improvements
recently implemented. It is then shown that, for
peaked SXR profiles, SXR tomography can be used
to robustly trace the trajectory of the SXR maximum
independently of the inversion algorithm used. Then,
it is shown that this trajectory is a robust estimate
of the core trajectory despite a shift between the SXR
maximum and the plasma center due to the presence of
W in a rotating plasma. Finally, a robust definition is
proposed for the displacement that takes into account
experimental difficulties.
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2.1. The SXR diagnostics of ASDEX Upgrade and
tomography

The SXR diagnostics of ASDEX Upgrade [35, 36]
has 12 camera heads distributed around the poloidal
cross-section, as shown in Fig 1 (a,b). Each camera
comprises between 9 and 22 semiconductor diodes
placed behind a common aperture and Be filter cutting
off the low energy photons to focus on the core plasma,
resulting in a total of 182 usable Lines Of Sight (LOS)§.
The number of cameras and their poloidal distribution
allow for a good geometrical coverage, a necessity
for accurate tomographic inversions. We used the
geometry of the 2014 campaign. All signals in this
article are downsampled to 200 kHz.
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Figure 1: Geometry of the SXR diagnostics on AUG
represented as LOS in (a) poloidal and (b) horizontal
projections, as well as selected VOS in (c) poloidal and
(d) horizontal projections

The diodes provide a signal corresponding to the
total power received on their active surface, spectrally
filtered by η, which includes the Be filter and the diodes
reponse function‡. Signal fi(tn) issued at time step tn
by diode number i is:

fi(tn) =

∫ ∫ ∫
V OS

∫ ∫
4π

εη(x, tn)Ωi(x)d2Ωd3V

§ excluding camera F which is at a different toroidal position
and camera heads I1 and I3 which have different Be filters
‡ which depends on the diode thickness, the type of
semiconductor junction and the bias voltage used

where εη(tn) =
∫∞

0
η(E)ε(x,E, tn)dE is the plasma

emissivity at time tn at position x, spectrally filtered by
the diagnostic response η. The solid angle subtended
by the detector-aperture system as seen from point x
in the plasma is Ωi(x) for detector i. The spatial inte-
gration is done over the plasma volume viewed by the
detector through its associated apertures, also called
Volume of Sight (VOS), some of which appear in Fig.
1 (c,d). Computing these VOS is a demanding task,
and is one of the main improvements implemented for
this article.

At a given time, the signals from all detectors
provide a set of projections of the (unknown)
emissivity. These are a set of Fredholm integral
equations of the first kind, which are ill-posed by
nature [37]. Additionally, εη(tn) is a continuous scalar
field with an infinite number of unknowns (but only
a limited number of equations, one per detector), the
problem is thus also under-determined. To reduce this
under-determinedness, the solution is approximated
by its discretization over a set of basis functions in
physical space εη(tn) ≈

∑N
j=1 cj(tn)εηj weighted by

coefficients cj(tn) (the unknowns). Several types of
basis functions are possible [38], the simplest of which
being pixels. In our case, the basis functions are a set
of bivariate b-splines of any degree between 0 (pixels)
and 2, and supported by a variable mesh grid (larger
near the edge where the emissivity is smoother and
weaker, to minimise the computation time), as seen in
Fig 2. The use of advanced basis functions is another
significant improvement implemented for this article.
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Figure 2: (a) Illustration of the variable size mesh and
basis functions of degree (b) 0, (c) 1 and (d) 2

The contribution (i.e. volume integral) of each
basis function to each detector measurements is stored
in the geometry matrix T . Since SXR diagnostics
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used for tomography are especially designed to create
narrow viewing volumes (in the poloidal direction,
to maximise poloidal resolution), it is tempting to
approximate the VOS as a Line of Sight (LOS), thus
simplifying the computation of T , which becomes a set
of 1D, instead of 3D, integrals. Indeed, the fact that
the SXR emissivity is expected to be quasi-constant
in the toroidal direction compensates the fact that the
VOS is usually not narrow in the toroidal direction (to
maximise the signal / noise ratio). Moreover, if one
choses a LOS, directed by vector k, inside the VOS,
the integral of Ωi(x) over any surface perpendicular
to this LOS is a constant quantity called the etendue
Ei(k). Using this approximation amounts to writing,
with S(k) being any surface perpendicular to k:{

fi(tn) ≈ fki (tn) = Ei(k)
∫
LOS

εη(x, tn)dl
Ei(k) =

∫ ∫
S(k)

∫ ∫
4π

Ωi(x)d2Ωd2S

Even though this LOS description is quite com-
mon and is often a reasonable first-order approxima-
tion, it remains inferior in precision to a full-3D de-
scription (VOS) [36, 39]. This is particularly true when
the emissivity field has a non-negligible second deriva-
tive in a plane perpendicular to the LOS (i.e.: on the
planes used to compute the etendue), as it happens for
very peaked and very hollow profiles or profiles with
narrow structures (small islands), all quite common in
tungsten-contaminated plasmas. Hence, in order to
suppress this source of inaccuracy, we implemented a
full 3D computation of T . Indeed, the ill-posedness of
the problem means that inversions are highly sensitive
to small errors in the equations and to noise. In addi-
tion to this effort, a Phillips-Tikhonov regularisation is
also used [40, 41]. Hence, the discretised solution vec-
tor εη(tn) = (c1...cN ), defined by the values of the basis
functions coefficients at time tn is found by minimising
the functional Φtn(εη) such that:

Φtn(εη) = ‖Tεη − f(tn)‖22 + αH (εη)

where α is a positive scalar called the regularisation pa-
rameter that sets the trade-off between fitting to the
measurements and regularity, and H is the chosen reg-
ularisation functional. The choice of α can be done
using several algorithms [37, 42, 43], and the choice of
H determines the kind of bias we want to introduce
[44, 45] (e.g.: smaller absolute value, gradient, curva-
ture...). More information about tomography diagnos-
tics and inversions can be found in [46, 47].

Details of the implemented techniques will be
discussed in depth in a future publication [48]. In the
present article, three different types of regularisation,
with different basis functions, have been benchmarked
to assess the robustness of our observations.

2.2. Robustness versus regularisation methods

The difficulty with tomography is to determine which
of the reconstruction features are physical, and which
are artefacts. We are interested here in the position of
the SXR profile maximum, which also means that we
are not interested in: the SXR profile in its entirety,
the absolute value of the SXR maximum (at most we
may be interested in its relative evolution), or the level
of poloidal asymmetry due to tungsten. All we need
is a robust trajectory of the SXR maximum, and this
is best achieved with very peaked SXR profiles, for at
least two reasons:

• the SXR maximum is unambiguously identified.

• the SXR maximum position is a well-constrained
aspect of the inversion, because small shifts induce
large changes in central channels signal.

Hence, we decided, as a first step of a long-term
effort, to focus primarily on very peaked SXR profiles
which are common in AUG since the introduction of
tungsten as a plasma facing material. Thus, by limiting
our analysis to such cases we significantly limit the risks
of ambiguous maximum location while still accessing a
large number and diversity of sawtooth crashes, espe-
cially since a peaked SXR profile in a W-contaminated
plasma does not necessarily mean a peaked electron
temperature profile.

To illustrate the robustness of the SXR maximum
position, 2D reconstructions of experimental data
were done using the following basis functions and
regularisation functionals:

• b-splines of degree 0 (pixels) with discrete
formulation of the Fisher functional [44] (D1FI)

• b-splines of degree 1 with exact formulation of 1st
order linear functional [44] (D1N2)

• b-splines of degree 2 with exact formulation of 2nd
order linear functional [44] (D2N2)

Notice that all regularisations are isotropic. In-
deed, anisotropic regularisation - i.e.: greater smooth-
ing in the poloidal than in the radial direction [45, 49,
50] - relies too much on the unknown 3D equilibrium
and would induce a bias that would be particularly un-
welcome for a m/n = 1/1 mode. Finally, all inversions
include a positivity constraint (εη > 0) and a boundary
constraint at the separatrix (where εη ≈ 0).

As can be seen in Fig 3, which shows cuts in the
horizontal plane (Z = 0) of the reconstructed profiles,
the position of the SXR maximum is a quite robust
feature that hardly suffers modifications from the
choice of regularisation. This is primarily due to the
intrinsic qualities of the SXR diagnostics (geometrical
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Figure 3: (a-d) Experimental SXR profile reconstructions
using in each case D1N2 (1st order linear regularisation
with degree 1 b-splines), D2N2 (2nd order linear
regularisation with degree 2 b-splines) and D1FI (minimum
Fisher regularisation, with pixels). Dashed vertical lines
mark the position of the maximum for each inversion.

coverage, signal to noise ratio and relative calibration)
and to the choice to limit the analysis to peaked SXR
profiles. This robutsness is quantified in table 1 by
computing the difference ∆ between the positions of
the maximum derived from each inversion method and
comparing it to the mesh size (2 cm) and to the Full
Width at Mid Height (FWMH) of the profile:

Table 1: SXR maximum position precision

shot 30749 30749 30774 30774
t (s) 2.613 2.614 6.542 6.5443

∆(D1N2−D2N2) (mm) 1.2 1.2 1.2 2.4
∆(D1N2−D2N2)

FWMH
(%) 0.9 1.4 1.1 2.2

∆(D1FI −D1N2) (mm) 1.2 2.4 1.2 3.6
∆(D1FI−D1N2)

FWMH
(%) 0.9 2.7 1.1 3.4

∆(D1FI −D2N2) (mm) 0.0 3.6 0.0 6.0
∆(D1FI−D2N2)

FWMH
(%) 0.0 4.1 0.0 5.7

These results are representative of this article:
the SXR maximum is generally localised within a few
millimeters. This sub-mesh precision is made possible
in two complementary ways:

• High-order b-splines allow more accurate recon-
structions since the error scales as hp, where h is
the mesh size (normalized < 1) and p is the degree.

• The position of the maximum is defined as the
center of mass M of the top 5 % of the profile:

M(tn) =

∫ ∫
S(ε>εLim)

xεη,tnd2S∫ ∫
S(ε>εLim)

εη,tnd2S

where S(ε > εLim) is the surface on which the emis-
sivity is greater than εLim = 0.95 max(ε). This is
particularly useful for pixel basis functions but hardly
changes the result for higher-order basis functions, at
most making it more robust versus noise.

By performing inversions every 5 microsecond
during the whole lifetime of the precursor, we can
plot in Fig 4 the trajectory of M in the poloidal
plane. Again, the same two examples as in Fig 3 are
reconstructed using the same 3 regularisations.
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Figure 4: Reconstructions via tomography of the SXR
maximum trajectory during two different precursors with
3 regularisations (same color code as in Fig 3)

As expected, the choice of the inversion techniques
does not affect significantly the reconstructed trajec-
tory, which is an outward spiral (due to plasma rotation
and growing displacement). The general shape and dy-
namics are pretty robust despite isolated discrepancies.

It is important to keep in mind that this spiral is
the trajectory of the SXR maximum, and that there
is no guarantee, in a W-polluted rotating plasma,
that it matches the plasma core, even for a peaked
SXR profile. We will now investigate the relationship
between these two objects.
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2.3. Robustness versus tungsten and plasma rotation

Since the proposed method uses the SXR maximum
as a proxy for estimating the core displacement, we
must check that this proxy is relevant despite poloidal
asymmetry. This is done for NBI-induced centrifugal
force thanks to a numerical tool developed at IPP that
simulates the 3D SXR emissivity stemming from a W-
contaminated plasma with a rotating (1/1) island [36].
This code uses the 1/1 mode description introduced in
[51] and, taking the total impurity density on a given
flux surface as an input, computes its 3D redistribution
in a rotating non-axisymmetric plasma. In this respect,
it is an extension of the 2D redistribution proposed in
[30, 31] for an axisymmetric plasma. This advanced
tool allows to estimate the behaviour of the SXR max-
imum with respect to the displaced core trajectory.

However, it must be kept in mind that it is not a
transport model in the sense that it does not have dy-
namic terms (it is fully static) and that it does not in-
clude a model for plasma and W redistribution through
the X point. Thus, the W density profile is only rel-
evant for small displacements (up to half the radius
of the q = 1 surface in the following). In Fig 5, the
SXR emissivity is shown (filled contours) over the mag-
netic surfaces (white contours) for two displacement
and rotation values. It is a worst-case scenario since
the SXR radiation is assumed to be W-only and W is
most strongly affected by centrifugal force. The back-
ground equilibrium is experimental AUG shot #26355
at t ≈ 2 s with Te(0) ≈ 2 keV.

Figure 5: Simulated W-only SXR emissivity from a
Porcelli-like 1/1 mode rotating at 15 kHz with displacement
0.09 (left) and 20 kHz, with displacement 0.28 (right). The
thick white contour is q=1.

There is a clear shift between the SXR maximum
and the displaced core. The main component of this
shift is horizontal, as expected, towards the LFS and is
due to the centrifugal force. There is also a small ver-

tical component due to the shaping of the perturbed
magnetic surfaces (originating from the shaping of the
magnetic equilibrium). The SXR maximum is aligned
in regions, where the perturbed magnetic surfaces are
vertical (because this defines the outermost position of
a given flux surface), and in general, this is located at
a different height than the displaced core itself.

In Fig 6, both trajectories are plotted over one
period for 4 different displacements, with a high mode
frequency (20 kHz), to check how the shift varies with
the mode phase. The shift, quantified by distance d
between the SXR maximum and the displaced core is
also plotted versus phase θ for a scan of several cases
(varying the frequency and displacement).
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displacement ξ, numbers are the surface (cm2) of each
trajectory (e) Shift d between the SXR maximum and hot
core versus the mode phase for various displacements (same
colors as in (a-d)) and two mode frequencies.

As expected, higher plasma rotation means larger
distance between the SXR maximum and the displaced
core. Also, the phase modulates this distance due to

the asymmetry scaling: εη(ρ,R) ≈ εη0(ρ)eλ(ρ)(R2−R2
ref )

[36], where R and ρ are the major and minor plasma
radius. For this Porcelli-based mode description, the
trajectory elongation is also slightly reduced. Despite
the shift and small distortion, even this worst-case sce-
nario shows that the area spanned by each trajectory
during one period is very similar and can be used to
define an average radius. The little fluctuations visible
on the low-ξ curves are numerical errors of the order
of the mesh size.

Although these simulations involve a resistive pre-
cursor, we see no reason for the effect to be different
with another kind of precursor. As long as the SXR
profile is peaked, we think that assuming that its tra-
jectory is a translated (and slightly distorted) version
of the core trajectory is a good approximation.
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However, these simulations are done with a
fixed displacement, while experimental data show
a constantly growing displacement such that the
trajectory is an outward spiral. Before simulating such
growing modes, it is necessary to propose a robust
definition of the displacement from such a spiral.

2.4. Defining the displacement

The core displacement ξ has to be approximated by
a SXR displacement ξSXR robustly derived from ex-
perimental SXR trajectory§. A naive approach would
estimate the distance between the magnetic axis (from
equilibrium reconstruction) and the SXR maximum.
This is not valid because the center of rotation of the
SXR maximum (i.e.: the spiral center) is usually not
the magnetic axis - as evidenced in Fig 6 (a-d) - due to
the rotation-induced asymmetry. For the same reason,
and also because a magnetic equilibrium reconstruc-
tion, ill-constrained in the center, introduces additional
sources of uncertainty, it seems difficult to define the
displacement from any flux coordinate.

More generally, methods measuring the absolute
distance between the SXR maximum and any fixed
point should be avoided because:

• The spiral center is unknown, and experimental
data shows that it drifts (slowly compared to the
mode frequency, but fast enough - compared to
the precursor lifetime - to induce a bias)

• The plasma elongation and shaping introduce
additional fluctuations of the measured distance,
which are not displacement

• The experimental data and tomography are never
perfect, occasional errors introduce fluctuations

Instead, an area-based quantity is more robust,
depends less on the plasma elongation and does not
require the identification of a fixed reference point.
In general, we can approximate the experimental
trajectory as a drifting ellipse-based spiral, with noise:

{
R(t) = RA(t) + (r(t) + r̃) cos(θ(t) + θ̃)

Z(t) = ZA(t) + ζ(t) (r(t) + r̃) sin(θ(t) + θ̃)
r(t) = r0e

∫ t
t0
γ(τ)dτ

θ(t) = θ0 + 2π
∫ t
t0
f(τ)dτ

RA(t) = RA,0 +
∫ t
t0
VR(τ)dτ

ZA(t) = ZA,0 +
∫ t
t0
VZ(τ)dτ

§ From now on we will use indifferently ξ or ξSXR for the SXR-
derived displacement since we have no access to the real core
displacement

Where
(
r̃, θ̃
)

are the noise/uncertainty levels re-

spectively on the radius and the poloidal position, ζ(t)
is the ellipticity, γ(t) is the growth rate, f(t) is the
frequency and A is the center of the spiral, dritfing at
speed V A(t). With this definiton, the surface of the
’instantaneous’ ellipse, tangential to the trajectory at
time t is SE = πζr2, from which we can define the
ellipse-based displacement as a generalised geometri-
cal radius ξE =

√
SE/π = r

√
ζ.

To estimate SE , we compute the surface spanned
during one period of the trajectory, as illustrated in Fig
7 in an ideal case (fixed center, constant growth rate,
constant ellicpticity, constant frequency, no noise...).
Here, the ellipse E corresponding to chosen point M(t)
appears in dashed red line, the fraction of trajectory
corresponding to t±T/2 where T = 1/f is delimited by
points M±T/2 and the correspondig surface S(t) ≈ SE
is shaded in grey, the spiral center A is indicated as well
as the center of mass B of S(t) which provides a zero-
order approximation of A (see Appendix B for more
details and error estimates).
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Figure 7: Illustration of the principle used to define
a robust displacement from a spiralling trajectory in a
surface-based approach.

This surface-based definition ξ =
√
S/π ≈√

SE/π = r
√
ζ = ξE provides a generalised geomet-

rical radius, that gives the same result for a circle and
for an ellipse of equal surface, thus reducing the influ-
ence of plasma elongation. Moreover, it also smoothes
out possible errors on occasional points and, in this
respect, has similar effect as a running-average. Fur-
thermore, since the surface spanned during one period
is updated for each time step, it follows the drift of the
spiral center.

Quantitatively, the surface SE of the red ellipse is



CONTENTS 9

well approximated by the grey surface S (spanned by
the spiral in one period) if the growth rate of the spiral
is smaller than its frequency. In this case, the exceeding
grey surface (i.e. the fraction that lies outside of the
red ellipse) is a good approximation of the missing
surface (i.e. the missing part in the red ellipse). The
approximation is better with quasi-constant γ, f and
ζ. As shown in Appendix A for a circular case (ζ = 1),
the approximation scales as:

lim
γ�f

ξ

r
√
ζ
≈ lim
γ�f

√
sinh(γ/f)

γ/f
= 1

Of course, real experimental data comes with
other difficulties, like changing frequency, elongation
or growth rate.

Generally, this definition of the displacement is
reliable under the following conditions, where ∆ refers
to the variation over one mode period:

(i) The frequency changes slowly: ∆f
f (t)� 1

(ii) The ellipticity changes slowly: ∆ζ
ζ (t)� 1

(iii) The growth rate changes slowly: ∆γ
γ (t)� 1

(iv) The growth rate is small γ � f

(v) The drift speed is small: r(t)� ‖v
A
‖

f (t)

(vi) The sampling frequency is sufficient fS/f > 6− 7

Indeed, quantities like (i) the frequency (known
by FT of key signals), (ii) the ellipticity (estimated
from background equilibrium) and (iii) the growth rate
(checked a posteriori) should change slowly compared
to the mode period. This is generally true, except in
the very last growth phase when condition (iii) might
not be satisfied, thus inducing larger error bars on the
displacement. Also, (iv) the growth rate should be
small compared to the mode frequency, as was shown
be the error derivation. This is also not always true
in the last growth phase. However, numerical appli-
cations show that the error remains within 10 % with
realistic ellipticity, even with γ = 2f (cf. Fig. 9). It
can go up to 25 % for γ = f with very strong ellipticity
(ζ = 2, cf. Appendix A). Consequently, we still use
this method for the last growth phase as it still gives
access to a rough estimate of the displacement.

Additionally, (v) the drift speed of the spiral cen-
ter should be small compared to the spiral dynamics,
this is almost always verified.

Finally, surface S is approximated by a polygon,
and the precision of this approximation depends on the
sampling frequency fS (vi). Also, the polygon library
used cannot compute the surface of a self-intersecting

polygon (as might happen due to noise or limited spa-
tial resolution). To circumvent these two limitations,
the ”ideal” definition given above is slightly modi-
fied by taking instead the convex hull of a fraction
κ ∈ ]0.5; 1[ of the polygon representation of S (see
Appendix A for details). This fraction is necessarily
a multiple of fS/f . In our case, the high frequency of
the SXR diagnostics generally allows to have κ ≈ 0.9
(fS/f > 10). The result is a numerically robust ap-
proximation of the surface, which remains close to the
surface of the red ellipse SE .

The accuracy of the method is numerically
assessed in Fig 8, which shows the reconstruction
of ξ from a phantom case (i.e. analytically known
input) representative of a typical AUG experiment.
In particular, the mode frequency (f ≈ 20 kHz), the
growth rate (γ ≈ 10 kHz) and the ellipticity (ζ ≈ 1.4)
are not constant but slowly changing, the center of the
spiral is slowly drifting (≈ 141 m/s) and the sampling
frequency is 200 kHz. There is also 2 mm random noise
on the radial position and π/64 on θ.
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Figure 8: (a) Realistic phantom spiral trajectory, with
drift, noise, ellipticity and finite sampling (b) Non-constant
mode frequency and growth rates (c) Input radius r

√
ζ

(black), naive estimate rf from a fixed point (blue) and
proposed surface-based displacement ξ (red).

The proposed displacement ξ (red in (c)) provides
good reconstruction of r

√
ζ and of its dynamics (i.e.:

the growth rate γ = ∂ ln(ξ)/∂t) despite non-ideal con-
ditions of use, thus demonstrating its robustness. Also
visible (blue) is a naive approach (fixed-point), where
the effects of noise, ellipticity and slow drift (responsi-
ble for the discrepancy at low displacement) are visible.

Nevertheless, the SXR maximum is not the dis-
placed core. We must then evaluate how well the whole
method retrieves the displacement and growth rate of a
spiraling core from the SXR maximum using the same
tool as in section 2.3.
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Simulating such growing modes with this tool im-
plicitly supposes that the W density has time to re-
equilibrate while the mode is growing, which trans-
lates into γ � vTh,W /πR0 [36], where vTh,W =√

8kBTW /πmW is the thermal velocity of W (if the
mode grows too fast, there is a risk that the SXR max-
imum may be a W ’bubble’ lagging behind the fast
displaced core). Hence, the growth rate is constrained
both by a technical reason (γ ≤ f) and by a physical
one (γ � vTh,W /πR0). It is thus a general limitation of
the presented work. Fortunatelly, as previously stated,
this condition is experimentaly often fulfilled, except
in the last phases which sometimes display γ ≈ f and
γ ≥ vTh,W /πR0, which is the limit of the proposed
method in its current state.

In Fig 9, several growing modes are displayed, with
f = 15 kHz and γ ranging from 1 to 30 kHz. In each
case, ξSXR is compared to the input core displacement
to assess how constraining the technical limitation is.
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Figure 9: (a-e) Trajectories of the displaced core (black)
and shifted SXR maximum (blue) for f = 15 KHz
and γ ∈ [1,5,10,15,30] kHz with the same scale (f-j)
Corresponding input core displacement (black) and ξSXR
(blue points). Titles show the input and SXR-retrieved γ
values. Discrepancies at low displacement for γ = 1 kHz
are numerical errors (≈ mesh size).

In all cases the growth rate is retrieved with very
good precision (cf. titles) and, remarquably enough,
even for cases which are in principle out the domain of

validity of our method, with γ = f and γ = 2f . Hence,
the technical limitation is not so restricting, but the
physical one remains (i.e. W transport, not accounted
for in this code).

Finally, Fig 10 shows, from AUG experimental
cases, that ξ is hardly affected by the regularisation,
thus concluding the demonstration initiated in 2.2 with
the same two cases. Interpretation of the behaviour
of these two particular cases will be addressed in a
later paper, here they simply illustrate the technical
robustness of the proposed method.
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Figure 10: Displacement ξ for the same 2 AUG crashes
and 3 regularisations described in 2.2.

In summary, we know that for peaked SXR
profiles:

(i) The SXR diagnostic and tomography give access
to a robust reconstruction of the trajectory of the
SXR maximum

(ii) This trajectory is a reliable proxy of the trajectory
of the displaced core

(iii) The displacement and growth rate of the core can
be retrieved via this proxy, thanks to a numerically
robust definition of the displacement

(iv) There is a weak technical limit (γ ≤ f), but a
possibly stronger physical limit (γ � vTh,W /πR0)
to the method validity.

We can now use this method to study experimen-
tal cases. However, before going further, it should be
underlined that the terminology used to characterize
sawtooth crashes is not always practical when it comes
to defining quantities from experimental data. Hence,
the next section proposes a number of quantitative def-
initions based on the data that is accessible via the
proposed method.
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3. Defining the crash reference time, crash
duration, growth phases and other quantities

The proposed method is only valid for peaked SXR
profiles, so it is usually not usable to characterise the
displacement of a postcursor as the post-crash profile
is usually flat or hollow. Nonetheless, all studied cases
clearly display a postcursor mode that closely resem-
bles a continuation of the precursor (same frequency
and location, in particular we observe no shift of the
mode poloidal position), which suggests incomplete re-
connection.

This remark underlines the necessity to define
exactly what is meant by ”precursor”, ”crash” and
”postcursor”. Indeed, as already stated in [52], the
vocabulary used by the tokamak community is some-
times a bit sketchy and lacks accurate quantitative def-
initions that could be used experimentally. In partic-
ular, the distinction between pre- and post-cursor os-
cillations is a bit artificial since a so-called precursor
oscillation may survive through the crash with identi-
cal frequency, localisation and similar amplitude.

In the framework of this article, we propose to
define a reference time for each sawtooth crash and
to call precursor all contiguous - from the point of
view of frequency and displacement - 1/1 mode activity
that precedes this reference time, and postcursor all
contiguous 1/1 mode activity that follows it. More
specifically, we propose two definitions for the reference
time:

(i) tξRef is the first time at which the displacement
reaches its absolute maximum.

(ii) tεRef is the time at which the the value of the SXR
emissivity maximum has the largest derivative.

These two definitions typically agree within a few
tens of microseconds (giving an indication of how well
the crash instant is identified), and they are comple-

mentary because while tξRef is derived from a spatial
information, tεRef is derived from a SXR intensity in-
formation, two different aspects of tomographic inver-
sions. Despite the fact that the absolute value of the
SXR emissivity maximum (ii) is not a robust quantity
with respect to tomography method, its relative time
evolution is more so, as illustrated in Fig 11, which
justifies its use to define tεRef .

While tξRef is the time of maximum displacement,
tεRef is the time when the effect of the reconnection on
the SXR emissivity is the most visible. When the SXR
profile stops being peaked (usually shortly after tξRef ),
the value of ξ computed by our method stops being
relevant.
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Figure 11: Time traces of the absolute value of SXR
maximum for 2 crashes (with same 3 regularisations as in
Fig. 3). The relative time evolution is robust and can be
used to define a reference time tεC and a crash duration ∆tε

from the best fit of 3 lines.

As far as the crash duration is concerned (we
voluntarily avoid the term ”crash time” to avoid
confusion between a reference instant and a duration),
we propose two experimental definitions:

(i) ∆tε is the time it takes for the SXR maximum
emissivity to drop.

(ii) ∆tξ is the duration of the main growth phase of
the precursor.

Indeed, ∆tε can be derived from the relative time
evolution of the SXR emissivity maximum. The best
possible fit is found for a 3-piece linear function and
the time interval corresponding to the middle linear
function is ∆tε, as illustrated in Fig 11.

It is more difficult to derive a robust definition ∆tξ

from the displacement. Indeed, the precursor growth
is typically a multi-phase process where each phase
seems to have its own dynamics. Empirically, the dis-
placement can usually be approximated, in logarithmic
scale, as a series of piece-wise linear growth phases.
Here the term linear clearly refers to the empirical
shape of the plot and does not necessarily imply lin-
earisation of the MHD equations. Although there are
some exceptions to this observation, we decide, as a
first step, to systematically decompose the logarithm
of the displacement as a set of piece-wise linear func-
tions, the slope of which is then used to define the
growth rate γi (for phase i). The quality of the fit is
estimated by the 95 % confidence bounds from which
error bars on the growth rate can be derived. Each
phase can also be characterised by the time ∆ti and
displacement ∆ξi it spans. If the phase duration ∆ti
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is to be compared to any reference ”crash time” from
literature, it should be corrected by a factor ξmax/∆ξi
to take into account the fact it does not correspond
to full reconnection but only to a fraction of it (see
Appendix C for detailed derivations). Hence, this cor-
rection will be done for each growth phase, and the
displacement-based crash duration is defined as the
corrected duration of the phase that represents the
largest reconnected fraction ∆tξ = ∆tI × ξmax/∆ξI
where ∆ξI/ξmax = max

i
(∆ξi/ξmax). While this defini-

tion is sufficient for the 3 cases presented in this paper,
attention of the community is drawn to the fact that
it is not always so.

As far as comparison with linear theory is
concerned, the growth rate γi of each phase will be
compared to the 1/1 resistive kink linear growth rate
γR, and its corrected duration ∆ti × ξmax/∆ξi to
Kadomtsev-based ”crash times”. All the following
literature-derived quantities are estimated from plasma
parameters in the vicinity of the q=1 surface, itself
estimated from the maximum displacement ξmax and
remapping on the background equilibrium:

• The poloidal Alfven time, computed from the
poloidal field at q=1: τA,θ = ξmax

Bθ/
√
ρµ0

• The reconnected flux Alfven time, estimated from
B∗θ ≈ (1−q0)Bθ, with q0 = 0.9 for all cases because

it is not well-measured [53]: τ∗A = ξmax
B∗
θ
/
√
ρµ0

• The resistive diffusion time, estimated from the

Spitzer resistivity η [54]: τRD =
µ0ξ

2
max

η

• The Kadomtsev reconnection time (with resistiv-
ity only in Ohm’s law) [10]: τK,η =

√
τRDτ∗A

• A modified Kadomtsev reconnection time (with
electron inertia only) [8], using the plasma angular

frequency ωP =
√

nee2

ε0me
: τK,e = ξmax

ωP
c τ
∗
A

• A modified Kadomtsev reconnection time (with
electron viscosity only) [11], using the electron

thermal velocity vTe =
√

kBTe
me

and acceleration

length L ≈ ξmax B
B∗
θ

: τK,v = ξmax
ωP
c

√
τ∗
A
L

vTe

• The 1/1 resistive kink growth rate from [54]
(p.333): γR = 1

(τ∗2
A
τRD)

1/3

In addition, and since all the considered SXR pro-
files are peaked, it is possible to quantify the peaking
of the 2D reconstructions by defining a peaking factor
Π = SP /SFWMH , where SP is the total plasma sur-
face and SFWMH is the surface of the iso-contour at
mid-height. Care must be taken as the absolute value
of Π does depend on the regularisation used. Hence,
comparisons are only relevant for identical regularisa-
tions, or if only its relative time evolution is considered.

The position of the q = 1 surface can be estimated
from the maximum displacement ξmax in two ways.
On the one hand, an extrapolation of the trajectory
ellipticity allows to plot the ”maximum ellipse” cor-
responding to the maximum displacement (this ellipse
can then be remapped on the background equilibrium
to average out possible errors). On the other hand,
the background equilibrium can be used to determine
which flux surface has an area matching ξmax. Both
approaches give similar results, and when necessary the
remapping is done on the toroidal flux coordinate ρT
because unlike ρP it does not depend on the uncertain
current profile.

Finally, as far as the quantification of the 1/1
mode frequency is concerned, a usual method consists
in performing the FT of a single central SXR chan-
nel. While this method is pretty straighforward, it may
miss the existence of the mode in its early growth phase
if its trajectory lies entirely inside the VOS of the se-
lected channel. Furthermore, extra harmonics may be
found in the spectrum, due to very peaked radiation
profile or when the VOS only intersects a fraction of
the trajectory. Such extra harmonics are misleading as
they do not necessarily correspond to physical mode
harmonics. Finally, if higher mode harmonics are re-
ally physically present in the plasma (like 2/2 or 3/3),
their influence will also be visible on the spectrogram
of the selected channel. Hence, in order to accurately
focus on the quantification of the 1/1 mode frequency
only, even for small displacements and at the exclu-
sion of other modes influence, we choose to perform
the spectrogram of the Z-coordinate of the SXR max-
imum trajectory. Indeed, while a single channel may
miss part of the dynamics, SXR inversions provide a
result that takes into account all channels. And we saw
that for peaked profiles the position of the SXR max-
imum is well-constrained such that even small move-
ments are reconstructed. Moreover, higher harmonics
like 2/2 or 3/3 modes should in principle not affect the
core displacement significantly and their influence on
the spectrogram is thus naturally eliminated. Further-
more, the Z coordinate is chosen over the R coordinate
to get rid of the possible influence of the LFS-HFS
asymmetry induced by the presence of W in a rotating
plasma. Finally, since the objective is to track the main
frequency of the 1/1 mode, all spectrograms are nor-
malised to their maximum value at each time step. We
empirically find that this method provides very clean
spectrograms as far as the 1/1 mode frequency is con-
cerned, for peaked SXR profiles.

In the following, the proposed method is applied
to three examples representative of the diversity of
sawtooth crashes in ASDEX Upgrade.
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4. Evidence of non-monotonic growth rates for
typical AUG crash precursors

The 3 chosen cases yield interesting quantitative
observations regarding the time evolution of the growth
rate. They are extracted from a larger database of
≈ 100 AUG crashes that will be explored in a further
publication. Since it was shown that the inversion
method had virtually no effect on the quantities of
interest, and for readability purposes, we show results
computed with one regularisation only (D2N2). Some
key plasma parameters, measured before the crash,
can be found for each case in table 2. For easier
comparison, the characteristics of a non-linear bi-fluid
MHD simulation in cylindrical geometry presented in
section 4.2 are also included here.

Table 2: Shot characteristics
q0 is assumed to be 0.9 in experimental cases

ξmax and rinv are remapped to ρT for information

Name Case 1 Case 2 Case 3 Simu.
shot 31579 30532 30774 -
t (s) 2.842 2.554 6.694 -

Gas D D D D
IP (MA) 0.8 0.8 0.8 0.53
BT (T ) -1.8 -2.4 -2.5 2.0
PNBI (MW ) 4.7 1.7 4.8 -
PECRH (MW ) 1.7 0 0 -
PICRH (MW ) 0 0 0 -
Te(0) (keV ) 2.7 2.7 2.3 2.0
ne(0) (1019 /m3) 6.8 3.5 10.3 3.0
vrot(0) (km/s) 95 120 100 0
q0 (0.9) (0.9) (0.9) 0.91
q95 -3.94 -4.69 -4.69 2.75 (cyl.)
Zeff 3.3 4.5 2.6 1.
βN 1.65 0.52 1.54 -
Peaking Π 40-50 40-50 80-90 -
ξmax (cm) 20 18 14 18
rinv (cm) 22 20 14 -
r(q = 1) (cm) - - - 15
ξmax (ρT ) 0.31 0.27 0.23 -
rinv (ρT ) 0.34 0.30 0.23 -
∆tε (µs) 108 79 652 -
∆tξ (µs) 445 264 556 85
∆tε/τA,θ 326 455 1875 -
∆tξ/τA,θ 1350 1556 1590 283
τRD (s) 1.6 0.65 1.0 2.1
τA,θ (µs) 0.33 0.17 0.35 0.30
τ∗A,θ (µs) 3.3 1.7 3.5 3.3

τK,η (ms) 2.3 1.1 1.9 3.0
τK,e (ms) 0.96 0.28 0.87 0.12
τK,v (ms) 0.49 0.22 0.48 0.25
γR (kHz) 3.9 8.0 4.3 3.1
ω∗
e/2π (kHz) 2.3 5.4 - 6.9
vTh,W /πR0 (kHz) 11.6 11.6 10.7 -

Precursor type Fish. Multi Slow
-like -harm.

In the following, robust observations on the
displacement and growth rate are drawn from
the proposed method in each case, and possible

interpretations for the specifity of each crash are
then discussed. To highlight the tendencies and
uncertainties, the growth rates will not only be
estimated in a piece-wise manner, but also fitted by
b-splines. Finally, it should be kept in mind that
quantities introduced for comparison with literature,
like τK,η, τK,e, τK,v or γR, are only orders of magnitude
since they depend on 1 − q0 ≈ 0.1 for all cases
(uncertainty ≈ one order of magnitude).

4.1. Displacement and growth rate

Case 1 is a typical precursor happening during a
fishbone instability, common on AUG. Indeed, in NBI-
heated plasmas, trapped fast ions may transiently
destabilize 1/1 modes. This so-called ”fishbone” in-
stability [55] is visible as a transient 1/1 mode on SXR
channels. Its lifetime is typically a few milliseconds
and it is characterized by a drop in 1/1 frequency due
to the redistribution of fast ions (i.e. the drive) in ve-
locity and/or physical space as the mode grows [56].
We observe many crashes preceded by fishbones, and
sometimes the precursor itself is initiated in a fishbone-
like manner.

The experimental recipe to identify fishbones is to
spot ’inverted comma’ shapes in the spectrogram of a
central SXR channel. Here it is done with the spectro-
gram of the Z-coordinate (cf. 3). Signs of 1/1 activity
are also visible on the SXR maximum and on the be-
haviour of ξ, as seen in Fig 12.

The four fishbones are clearly identified, as well
as the precursor which starts like a fishbone from
the point of view of the frequency, displacement and
growth rate. A reproducible pattern appears. A closer
look at the displacement and growth rates during the
fishbones and precursor can be obtained by overlaying
them all over one another, as illustrated in Fig 13.

The precursor growth rate clearly decreases be-
fore suddenly surging, suggesting a sudden change in
the growth regime. The fact that the growth rate is nu-
merically close to the linear growth rate of a resistive
kink mode does not necessarily mean that the growth
is linear, indeed, both the non-monotonicity and the
sudden changes support the idea of non-linear growth
through the whole phase. The global picture seems
rather to be that of a non-monotonic non-linear growth
rate that simply happens to be numerically close to a
linear growth rate.

Regarding the onset criterion and the reason why
this particular fishbone leads to a crash, no conclusive
observation could be made with available data. This
aspect remains to be investigated.
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Figure 12: (a) Spectrogram (b) SXR maximum value with
∆tε (grey shaded area) (c) peaking factor (d) displacement
in linear scale with non-corrected ∆tξ (grey shaded area)
and (e) in log scale (f) growth rates and (g) phase durations
of a precursor preceded by 4 fishbones on ASDEX Upgrade.

Case 2 is also quite common in AUG. It is a case for
which the non-monotonicity is also clear but with no
visible fishbone activity before or during the precursor.
In fact the mode frequency is almost constant (slightly
increasing) through the whole phase. In Fig 14, the
mode growth is clearly damped during phase 2.

The growth rate decreases between phases 1 and 2,
before increasing again in phase 3. It is almost constant
in all three phases. This hightlights both the piece-wise
behaviour and the non-monotonicity. Then, a sudden
regime change takes place and the growth rate surges
in phase 4, up to values comparable to the mode fre-
quency. As was shown in Fig 9 and Appendix A, the
proposed method should be technically valid (≈ 10 %
error in such cases). However the physical limit may
be reached here and W transport may be somewhat
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Figure 13: Superimposition of fishbones and precursor
phases, with the same color code as in Fig 12, to compare
the (a) diplacement in log scale and (b) growth rates.

slower than the reconnection during a short time at
the beginning of phase 4, as the measured growth rate
transiently exceeds vTh,W /πR0, this aspect is the main
unknown. Notice again how the growth rate is of the
same order of magnitude as γR, while its behaviour
clearly indicates non-linearity.

This case illustrates the difficulty of defining
the ”precursor”. One could argue that it is the
collection of phases 1-3 and that phase 4 should be
called the ”crash”, based on the clear slope break of
the displacement between phases 3 and 4. But the
behaviour of both ξ and f suggest that this is all the
same mode that simply crosses a threshold at some
point. Hence, we choose to call ”precursor” the whole
sequence (phases 1-4). Also, the slope break is not
always so visible and there are sometimes several slope
breaks, and the fastest growth phase is not always the
very last one, as we will see in Case 3, such that a
decision based only on this criterion would hardly be
applicable to all cases.

Case 3 is a less common, but not rare, slow crash.
This behaviour, illustrated in Fig 15, recalls the crash
”of the 2nd kind” presented in [52] on Tore Supra. In
particular, the time evolution of the displacement is
similar, with a fast and then steady increase.

This case is representative of the difficulty of defin-
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Figure 14: (a) Spectrogram (b) SXR maximum value with
∆tε (grey shaded area) (c) peaking factor (d) displacement
in linear and (e) log scale (f) growth rates and (g) phase
durations of a precursor without fishbone on AUG. Here
∆tξ is computed from phase 4.

ing the reference time. Here tξRef and tεRef do not
match as well as for fast crashes, and there is almost 1
ms of discrepancy. Similarily, it illustrates how the
terms ”precursor” and ”postcursor” may sometimes
seem superficial. Indeed, given the unchanged fre-
quency and the clear continuation of the mode activity
throughout the crash, one could argue that there is no
reason to consider two distinct phases. Nevertheless,
we follow the criteria introduced in section 2 (i.e. no
clear discontinuity in frequency and displacement) and

consider phase 4 to be part of the precursor and tξRef
to be the good reference time. This choice, however
questionable, is supported by the fact the SXR profile
stops being clearly peak after tξRef , which also means
the displacement computed after it cannot be consid-
ered relevant and is thus not shown.
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Figure 15: (a) Spectrogram (b) SXR maximum value with
∆tε (grey shaded area) (c) peaking factor (d) displacement
in linear and (e) log scale (f) growth rates and (g)
phase durations of a slow precursor on AUG. Here ∆tξ is
computed from phase 3. The vertical dahsed lines are tεRef
(first) and tξRef (second).

Again, it is clear that the sawtooth precursor
growth rate does not undergo a monotonic increase
and that it often displays a piece-wise quasi-constant
behaviour suggesting sudden regime changes. Also, the
fastest growth phase is not the last but the first one.

The slowness of the crash is tentatively quantitifed
in table 2 by its ∆tε and ∆tξ, absolute or normalised
by the poloidal Alfven time scale τA,θ, with the values
obtained in the two previous cases. All estimates show
a longer crash.

4.2. Interpretation

In this sub-section we use and illustrate another ca-
pability permitted by the presented method: the fine
tracking of the mode frequency together with its dis-
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placement and its remapping to the bulk plasma ro-
tation profile for comparison. We also investigate the
importance of higher harmonics for Case 2 and of the
pressure gradient for Case 3.

Case 1 The relationship between the fast ions and
the precursor is not completely clear. It has been re-
ported in literature [57, 58] that when sawtooth crashes
happen during fishbones, the crash often occurs in the
phase of maximal fishbone amplitude. This is also ob-
served here, as clearly visible in Fig 13. It suggests a
strong iteraction between both instabilities, like mode
coupling or stabilisation of the 1/1 precursor by fast
ions until they are redistributed [58, 59]. This sup-
ports the idea that the fishbone should be considered
as part of the precursor itself.

In Fig 12 (a), the mode frequency does not
stabilize at the same low value as for the preceding
fishbones (≈ 9 kHz), instead it keeps on decreasing
to a lower value (≈ 6 kHz). We can propose an
interpretation in the light of Fig 16, which displays
the mode frequency, its displacement, and the plasma
toroidal rotation profiles before and after the crash, as
measured by the charge exchange diagnostics. Two
phases (A) and (B) are indicated, and the points
delimiting them are remapped (from frequency (a)
and displacement (b) via background equilibrium
reconstruction) to a toroidal rotation velocity (c) for
comparison with the rotation velocity profile measured
by charge exchange.
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Figure 16: (a) Spectrogram with smooth main frequency
(green solid line) and (b) displacement of a precursor
(same as in Fig 12) (c) Plasma toroidal rotation profiles
before (peaked) and after (flattened) the crash from charge
exchange, with remapped mode frequency (black dots).

During a normal fishbone, the mode frequency is
aligned on the fastest trapped ions frequency. Then,
due to removing of the drive (i.e. of the most energetic
fast ions), the frequency decreases. For the precursor,
this happens during the first phase (A), and then the
remapping of the mode frequency and displacement on
the bulk rotation profile in phase (B) suggests that
reconnection has started, thus forcing the mode fre-
quency to align to the bulk plasma rotation at q = 1
for the fast growth phase.

The estimated electron diamagnetic frequency ω∗e
(cf. table 2) should translate into ≈ 22 km/s if
remapped to rotation velocity. Remarquably, there
does not seem to be any noticeable influence of ω∗e
on the resistive mode frequency which almost perfectly
matches the bulk plasma rotation at q = 1 in phase (B).
However, the value in table 2 corresponds to phase (A),
and its evolution in phase (B) could not be checked due
to noise and missing data.

Case 2 As opposed to Case 1, here the mode fre-
quency slowly increases up to the crash reference time.
A look at the measured plasma rotation velocity and its
time evolution provides 3 possible and complementary
interpretations. First, as seen in Fig 17 (c), the whole
rotation profile undergoes a steady increase throughout
the whole sequence (i.e. the profile after the crash is the
same as before the crash, within error bars, but trans-
lated to higher values). Hence, at any fixed position,
the mode frequency would increase with time if the
mode is resistive. Second, the error bars are compatible
with a slightly hollow rotation profile, itself compati-
ble with the 2 tangential NBI sources used for this shot
with an off-axis deposition layer (ρP ≈ 0.1−0.2 accord-
ing to the background equilibrum reconstruction). In
the case of an initially ideal mode with low frequency,
its frequency would increase as it turns into a resistive
mode and reconnects on the q = 1 surface. Third, the
role of the electron diamagnetic frequency (estimated
from the global pressure gradient inside q = 1) is un-
clear, but we observe that it decreases during phase
(B). Since ω∗e and the bulk plasma rotation go in op-
posite directions, a decrease of the former could trans-
late into an increase of the resistive mode frequency
observed in the laboratory frame (that is, if ω∗e has
any influence on the mode frequency, which may be-
come true as the mode changes regime but is difficult
to check).

This analysis of the mode frequency does not
provide any explanation for the transient growth rate
damping observed during phase 2 of Fig 14, and there
is no visible fishbone activity either. One possible
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explanation lies in non-linear coupling between the first
and higher mode harmonics. Indeed, the simulation of
a sawtooth crash precursor with of a non-linear bi-fluid
MHD code in cylindrical geometry with circular cross-
section [60] does show a correlation between a relative
increase of the 2nd/1st harmonic energy ratio and a
transient growth damping of the 1/1 precursor mode,
as shown in Fig 18.
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Figure 18: Simulation of a sawtooth crash precurosor
using a fully non-linear bi-fluid MHD code in cylindrical
geometry. (a) Time trace of the ratio of the maximum of
the 2/2 perturbation profile over the 1/1 profile (b) Time
trace of the displacement (c) Estimated growth rate.

In addition to the characteristics displayed in ta-
ble 2, the simulation assumes a perpendicular heat dif-
fusivity of χ⊥ = 0.2 m2/s and perpendicular particle
diffusivity D⊥ = 0.2χ⊥ = 0.04 m2/s. Finally, the code
does not include fast ions (consistently with the ab-
sence of fishbone activity in this case).

Among of the main differences of this simulation
with Case 2 are the low Zeff value which affects the
τRD/τA,θ ratio, the cylindrical geometry and absence of
toroidal coupling, and the fact that we do not have ac-
cess to accurate measurements of q0 in the experiments
(0.9 is simply a guess). Despite these differences, the
simulation clearly shows a non-monotonic growth rate
and, to some extent, a piece-wise behaviour (despite
fluctuations). These two key features echo our robust
experimental observations. Also, we observe that γ is
numerically close to γR, like in the experiments.

The whole sequence in Fig 18 can be interpre-
tated as follows: the simulation is started in a situ-
ation where the 1/1 mode is stable but the 2/2 mode
is just above its linear stability threshold. As this 2nd
harmonic grows (phase 1), it locally flattens the tem-
perature profile and destabilizes the 1/1 mode which
then becomes dominant (phase 2, the displacement in-
creases as the ratio 2nd/1st decreases). Then, the 1/1
mode is again transiently stabilized by its competition
with the 2/2 mode (phase 3, a transient decrease of the
displacement corresponds to a transient increase of the
2nd/1st ratio). Finally, the 1/1 mode becomes domi-
nant (phase 4) and leads to a crash (phase 5).

In the light of this simulation, the possibility that
the 1/1 mode of Case 2 be transiently stabilized by a
competition with a 2/2 mode during phase 2 is now
investigated.

The presence of a 2nd harmonic at ≈ 20 kHz
is quickly confirmed from the spectrograms of central
SXR channels. However, this second harmonic could
simply be due to the measurement technique and not
necessarily to a real 2/2 magnetic perturbation, as
explained in section 3 and illustrated in [21] in the case
of ECE measurements. This possibility is eliminated
thanks to Fig 19 which shows:

• A 2D reconstruction of this 2nd harmonic, with a
rotating spatial structure compatible with a 2/2
mode (a)

• The spectrogram of the reconstructed SXR
emissivity at point A showing the same 2nd
harmonic (b).

• The spectrogram of a ballooning coil, confirming
that this - weak but visible - 2nd harmonic
corresponds to a magnetic perturbation (c).
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Figure 19: (a) 2D reconstruction of the 2nd harmonic,
stronger on the LFS due to W asymmetry (b) Spectrogram
of the total SXR emissivity at point A (c) Spectrogram of
ballooning coil B31-02. The 2/2 mode is at ≈ 20 kHz

The presence of a real 2/2 mode is thus confirmed.
The time evolution of its relative importance over the
1/1 mode can be estimated from the spectrograms. In
Fig 20 (b) the 2nd/1st harmonic ratio is plotted. It is
computed from the spectrograms of the central SXR
channel, of point A and of the ballooning coil, in order
to assess the robustness of the observation with respect
to the chosen signal.
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Figure 20: (a) Ratio of the 2nd over the 1st mode harmonic
computed from the spectrograms of SXR channel I052, of
point A and of a ballooning coil, the ratios are normalized
to match at t ≈ 0.0025 (b) Displacement in log scale.

A transient increase of the 2/2 relative importance
is observed on the ratio computed from the central
SXR channel and from the ballooning coil. Particular
care must be taken when interpreting this data, and
the following should be kept in mind:

(i) The ratio computed from the SXR channel may
be affected by changes in the shape of the signal
(peaking, trajectory truncation...).

(ii) The ratio from point A may be smoothed by the
inversion since this 2/2 mode is a subtle and weak
feature of the reconstructed profile.

In the light of these remarks, we propose the fol-
lowing interpretation: the regularisation smoothes out
the transient increase of the 2nd/1st harmonic ratio,
explaining why it is not visible on A. The SXR channel
includes the physical increase of the 2/2 mode, but also
other non-physical contributions, like slowly increased
peaking (cf. Fig 14), explaining why the correlation
with phase 2 is not as clear as for the ballooning coil.

In summary, a 2/2 mode coexists with the 1/1
mode in the experiment, and there is a transient
damping of the 1/1 mode which, as suggested by
the simulation, is correlated to an increase of the
relative importance of the 2/2 mode. This suggests
competition between the two modes, which also
supports our general observations (non-monotonicity
and more generally non-linearity).

Case 3 The very stable mode frequency observed in
case 3 is consistent with a combination of flat central
plasma rotation profile and small q = 1 surface (i.e.
small ξmax), as illustrated in Fig 21.
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Figure 21: (a) Spectrogram and (b) displacement of the
Case 3 precursor (c) Plasma toroidal rotation profiles before
and after the crash from charge exchange.

More delicate is the explanation of the slowness
of the crash. It was found in recent simulations
that crashes with resistive precursors were significantly
slower when q0 is closer to unity [60]. Experimentally
accessing an accurate estimate of q0 is presently im-
possible on ASDEX Upgrade, but notice that a higher
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q0 (i.e. closer to unity) should translate into a smaller
q = 1 surface provided the q profile is both monotonic
and not too flat in the center. It is not sufficient to con-
clude beyond reasonable doubt, but it is encouraging
and we will try to assess the robustness of this obser-
vation with a larger database in a later publication.

As far as linear theory is concerned, the drive of
the 1/1 mode in its early phase should be found in
the pressure gradient at the q = 1 surface. While we
know that most of the precursor lifetime corresponds to
non-linear growth with large perturbations, it remains
interesting to check how the crash duration scales
versus a naive extrapolation of the linear theory (i.e.:
versus the pressure gradient at q = 1 in the early
precursor lifetime). This is done in Fig 22 for the two
definitions of the crash duration ∆tε and ∆tξ that we
proposed in section 3.
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Figure 22: (a) Pre-crash electron pressure profiles for all
3 cases, with the estimated q = 1 surface indicated by
vertical lines (b) Estimated crash durations ∆tε and ∆tξ

(cf. section 3) versus the absolute pressure gradient at
q ≈ 1.

Contrary to what could be expected from an ex-
trapolation of linear stability theory, both measures of
the crash duration show that a larger pressure gradi-
ent at q = 1 does not cause a faster crash. In fact
the correlation even seems to be reversed, particularly
for ∆tε. This is yet another confirmation that non-
linearity plays a crucial role in the precursor develop-
ment and crash duration and underlines the relevance
of the presented experimental method, the results of
which should be compared to non-linear MHD simula-
tions.

5. Conclusions and perspectives

This paper aims at laying the basis of a long-term effort
to provide experimental input for validation of saw-
tooth crash numerical models. In this respect, we pro-
posed a robust, accurate and thoroughly benchmarked
method to derive an estimate of the core displacement
for crashes with initially peaked SXR profiles using
the SXR maximum - retrieved by tomography - as a
proxy. The method has been presented in its key tech-
nical details, ranging from improvements of the SXR
tomography to the definition of a generalised geomet-
rical displacement. Its robustness was assessed with
respect to key aspects like the regularisation or the re-
lation between SXR maximum and the displaced core
in a rotating W-contaminated plasma. The philosophy
was to make the method transparent and accessible to
allow for constructive long-term incremental improve-
ments by the community.

It was shown that both the displacement and its
growth rate can be retrieved successfully provided some
implicit conditions are met, like profile peakedness or
small growth rate compared to the mode frequency and
to W thermal velocity. Some quantitative definitions
were proposed to allow for characterisation of crash
precursors from available experimental data.

The proposed method was applied to 3 typical
precursors with different characteristics. All cases dis-
play non-constant growth rates, non-monotonicity and
piece-wise behaviour. These aspect strongly suggest
non-linear growth, the determinants of which remain
to be identified.

The frequency of each precursor was shown to be
closely related to the bulk plasma rotation and little or
no effect of the electron diamagnetic frequency could
be evidenced.

It was confirmed that a precursor could be ini-
tiated in a fishbone-like manner, thus supporting the
idea that fast ions can influence the sawtooth crash
onset. Thanks to the interpretation suggested by an
MHD simulation, it was also shown that a transient
damping of the growth rate can be correlated to a
similarly transient competition with a 2/2 mode, thus
underlining the role of non-linear interactions between
harmonics. A slow crash was empirically related to a
smaller q = 1 surface - thus suggesting a smaller 1− q0

value - consistently with recent literature. Finally, it
was shown that the role of the pressure gradient at
q = 1 suggested by a simple extrapolation of linear
theory was not sufficient to understand crash duration.

Among the limitations of this work, are the small
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number of cases studied so far and the unavailability
of some experimental data (robusts estimates of q0 in
particular). A systematic study on a larger database,
of the order of several tens of cases at least, is currently
being carried out to provide more robust observations
and help identify reproducible patterns and key plasma
parameters in the determination of the onset criterion
or the precursor behaviour and lifetime. Additionally,
the simulation used to help interpret Case 2 was not
completely realistic and more experimentally-relevant
simulations are currently being performed.
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Appendix A. Displacement error estimate with
no noise and infinite sampling

Given an ellipse-based trajectory, with zero noise and
t0 = 0: {

R(t) = RA(t) + r(t) cos(θ(t))
Z(t) = ZA(t) + ζr(t) sin(θ(t))

{
r(t) = r0e

γt

θ(t) = 2πft

{
RA(t) = RA,0 + VRt
ZA(t) = ZA,0 + VZt

The ’real’ generalised radius at time t is the one
associated to the instantaneous ellipse E: ξE = r

√
ζ.

The surface computed, assuming infinite time sampling
of the trajectory, by the proposed method S is the sum
of the integral of the spiral on fraction κ, SI , plus the
triangular surface ST recovered when taking the convex
hull of the polygon, S = SI + ST , as illustrated in Fig
A1.

In the following, we assume that:

(i) The mode frequency does not vary significantly
over one period : ∆f

f (t) << 1

(ii) The growth rate does not vary significantly over
one period : ∆γ

γ (t) << 1

(iii) The ellipticity does not vary significantly over one
period : ∆ζ

ζ (t) << 1
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Figure A1: Illustration of the principle used to define
a robust displacement from a spiralling trajectory in a
surface-based approach taking into account the fact that
finite sampling only allows to integrate over a fraction κ of
a period. The surface of the remaining triangle is retrieved
by taking the convex hull of the polygon (here the polygon
is assumed to have infinite sampling).

(iv) The drift speed is very small compared to the

trajectory : r(t) >>
‖vA‖
f (t)

Under these conditions:

ST = 1
2‖AM t+κT/2 ∧AM t−κT/2‖

= 1
2r

2
0ζe

2γt sin(2πf(t− κT2 )− 2πf(t+ κT2 ))
= 1

2r
2
0ζe

2γt‖ sin(2πκ)‖

And

SI = π
∫ ti+κT/2
t−κT/2 r̂2(t)f(t)dt

= r2
0πf

1+ζ2

2

∫ t+κT2
t−κT2

e2γt (1 + cos(2φ) cos(4πft)) dt

If

 cos(ψ) = 2γ√
(2γ)2+(4πfmode)2

sin(ψ) = 4πfmode√
(2γ)2+(4πfmode)2

, then:

ST = r2
0πfmode

1+ζ2

2

([
e2γt

2γ

]t+κT2
t−κT2

+ ...

cos(2φ)√
(2γ)2+(4πf)2

[
cos(4πft− ψ)e2γt

]ti+κT2
t−κT2

)
= r2

0π
1+ζ2

2 e2γtκ
sinh(κ γf )

κ γf

(
1 + 1−ζ2

1+ζ2
cos(4πft−ψ+2πκ)√

1+( 2πf
γ )

2

)
Hence, remembering that r

√
ζ =

√
ζr0e

γt and

ξ =
√

ST+SI
π , we can write:

ξ

r
√
ζ

=

(
‖ sin(2πκ)‖

2π + κ
2

sinh(κ γf )
κ γf

× ...(
1+ζ2

ζ + 1−ζ2
ζ

cos(4πft−ψ+2πκ)√
1+( 2πf

γ )
2

))1/2



CONTENTS 21

Thus, if, as in our case κ ≈ 1, we can write:

ξ

r
√
ζ

=

√√√√√√√1

2

sinh
(
γ
f

)
γ
f

1 + ζ2

ζ
+

1− ζ2

ζ

cos(4πft− ψ)√
1 +

(
2πf
γ

)2


Then, if γ << f :

ξ

r
√
ζ
≈

√
1 + ζ2

2ζ

Which is unity for ζ = 1 and 1.12 (i.e. 12% error)
for ζ = 2.
If, on the other hand, if γ ≈ f , we have:

ξ

r
√
ζ
≈ 0.767

√
1+ζ2

ζ + 1−ζ2
ζ

cos(4πft−ψ)√
1+4π2

< 0.767
√

ζ2+1
ζ + ζ2−1

ζ
1√

1+4π2

Which is 1.08 for ζ = 1 and 1.27 for ζ = 2. Hence,
even with at the limit of validity of our geometrical
approach (i.e. γ ≈ f), the error remains reasonable (of
the order of 25% with a strongly elongated plasma).

Appendix B. Center of rotation error estimate
with no noise and infinite sampling

Additionally, computing the center of mass of surface
S (point B in Fig. 7) for each time step yields a proxy
of the spiral center (point A in Fig. 7). This proxy is
a rough approximation and its own trajectory is also
a spiral. Hence, it is possible - to refine the approxi-
mation - to perform again the same operation (i.e. to
derive the center of mass based on the trajectory of B).
This operation can be performed iteratively and gets
more accurate each time. The error with respect to A,

for the N-th iteration, scales as
(
γ
f

)N
when γ

f � 1 (cf.

Appendix B). We use this approximation at the 3rd
order.

For simplification of the calculations we assume
here that κ = 1 and that we are dealing with a circular
spiral ζ = 1 with a fixed center. Then, if B is the
center of mass of the surface spanned over one period:

OB =

 xA + 2πf
Si

∫ t+T/2
t−T/2

∫ r0eγt
0

r2dr cos (2πft) dt

yA + 2πf
Si

∫ t+T/2
t−T/2

∫ r0eγt
0

r2dr sin (2πft) dt


=

 xA + r 2
3Cπ

γ
f

sinh( 3γ
2f )

sinh( γf )
cos (2πfti − (φ− π))

yA + r 2
3Cπ

γ
f

sinh( 3γ
2f )

sinh( γf )
sin (2πfti − (φ− π))



With 
3γ
2πf

C = cos(φ)
1
C = sin(φ)

C =

√
1 +

(
3γ

2πf

)2

Hence, if rB is the radius of the center of mass B
then:

rB
r

=
2

3Cπ

γ

f

sinh( 3γ
2f )

sinh(γf )

The trajectory of B is thus also a spiral, of
the same frequency as the mode itself, but a radius
decreased by a constant factor. Re-iterating the same
operation on the trajectory of B will yield another
spiral, with a radius reduced again by the same factor.
More generally, at the N-th order, the radius is:

rNB
r

=

(
2

3Cπ

γ

f

sinh( 3γ
2f )

sinh(γf )

)N

Which scales as
(
γ
f

)N
when γ

f << 1. Thus, if
γ
f is small, the center of mass of the surface spanned
by one period, computed at the N-th order, is a
good approximation of the real center of the spiral.
Numerically we use the 3rd order to get satisfactory
results (error less than 1 mm).

Appendix C. Kadomtsev-based crash times

The crash times estimated from Kadomtsev-based
models (the varying part is the content of Ohm’s
law) give the order of magitude of the duration of
the total magnetic reconnection. Experimentally, we
see that the reconnection process can be divided into
phases with varying growth rates. Each phase i can be
identified and characterised by a duration ∆ti and a
displacement ∆ξi. Let us calculate the time this partial
reconnection should take with a similar approach as
the one used for Kadomtsev-derived crash times. The
equation of mass conservation from the inflow to the
outflow yields:

r1vin = δvout

where δ is the thickness of the resistive layer, vin is an
estimate of the core velocity (influx velocity), vout is
the outflow velocity and r1 is an estimate of the q = 1
radius which is itself an estimate of the length on which
the reconnection happens. Then, from volumic energy
conservation, we derive an estimate of the outflow
velocity as the reconnected flux Alfven time:

B∗2θ
2µ0

=
ρv2
out

2
⇒ vout =

B∗θ√
µ0ρ

= v∗A
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Where B∗θ ≈ (1− q0)Bθ is the reconnected part of
the poloidal magnetic field. Then, the time necessary
for displacement ∆ξi is approximately:

∆ti =
∆ξi
vin

= ∆ξi
r1

δv∗A

So the outflow velocity is fixed by the reconnected
flux, the only changeable part is the width δ of the
resistive layer. It is derived from a combination of
Faraday’s law and Ohm’s law [10, 61, 11]:{

E − vinB∗θ = 0
E = ηj + me

nee2
vin
δ j + me

nee2
vTe
L j

where the first term on the right hand side is due
to the plasma resistivity [10], the second term is the
electron inertia [61] and the last term corresponds to
the electron parallel viscosity [11]. With ne, me and
e the electron density, mass and charge, η the plasma

resistivity, j the current density, vTe =
√

kBTe
me

the elec-

tron thermal velocity and L ≈ r1
B
B∗
θ

the acceleration

length of electrons.

If we consider that the dominant term is the
plasma resistivity, we retrieve a sligthly modified
version of the original Kadomtsev time scale by
introducing the resistive diffusion time scale τRD =
r21µ0

η and the reconnected flux Alfven time scale τ∗A =
r1
v∗
A

:

δ =

√
ηr1

µ0v∗A
⇒ ∆ti =

∆ξi
r1

√
τRDτ∗A

If the resistive layer width is controlled by electron
inertia then, introducing the plasma pulsation ωP =√

nee2

ε0me
:

δ =

√
me

µ0nee2
=

c

ωP
⇒ ∆ti =

∆ξi
r1

r1ωP
c

τ∗A

And if the electron parallel viscosity is dominant
then:

δ =

√
1

τ∗A

c2

ω2
P

vTe
L
⇒ ∆ti =

∆ξi
r1

r1ωP
c

√
τ∗AL

vTe

In order to compare the experimental time scale
in each growth phase with the same reference time
scales, we simply compare ∆ti

r1
∆ξi

to τK,η =
√
τRDτ∗A,

τK,e = r1ωP
c τ∗A and τK,v = r1ωP

c

√
τ∗
A
L

vTe
.
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