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The Goldston heuristic estimate of the scrape-off layer width (Nucl. Fusion 52, 013009, 2012)
is reconsidered using a fluid description for the plasma dynamics. The basic ingredient is the
inclusion of a compressible diamagnetic drift for the particle cross field transport. Instead of
testing the heuristic model in a sophisticated numerical simulation including several physical
mechanisms working together, the purpose of this work is to point out basic consequences for a
drift-dominated cross field transport using a reduced fluid model. To evaluate the model equations
and prepare them for subsequent numerical solution a specific analytical model for 2D magnetic
field configurations with X-points is employed. In a first step parameter scans in high-resolution
grids for isothermal plasmas are done to assess the basic formulas of the heuristic model with
respect to the functional dependence of the scrap-off width on the poloidal magnetic field and
plasma temperature. Particular features in the 2D-fluid calculations - especially the appearance
of supersonic flows - are discussed and can be understood in the framework of a reduced 1D model.
The resulting semi-analytical findings might give hints for experimental proof and implementation
in more elaborated fluid simulations.

I. INTRODUCTION

The heuristic model of Goldston [1] has attracted much
interest and discussion in the studies of scrape-off layer
power width and has been compared with several exper-
imental results [2; 3]. However, its analytical framework
does not take into account several details of the mag-
netic field shaping, parallel flow balances, electric fields
and neutral physics. The purpose of this contribution
is to complement the heuristic estimate of Goldston and
to assess the particular implications of the drift-based
radial particle transport for the scrape-off layer (SOL)
width in an axisymmetric tokamak geometry including
an X-point. The basic ideas of Goldston’s approach are
rewritten as a reduced 2D fluid model taking into ac-
count particle balance and parallel momentum balance in
an isothermal plasma. The basic ingredient is the inclu-
sion of a compressible diamagnetic drift for the particle
cross field transport. Numerical solution of this reduced
transport model shows that
(1) the specifics of the drift-based radial transport in-

troduces particle and momentum sinks in the SOL dy-
namics causing supersonic flows - contrary to diffusive
seeding of the SOL.
(2) in standard ASDEX Upgrade geometry the SOL

width is often well approximated by a constant decay
length Λ, characterizing an exponential decay of particle
density with respect to the flux label coordinate.
(3) the basic dependencies of SOL width on the

poloidal Larmor radius remain unchanged in X-point ge-
ometries.
The second result justifies the reduction to a 1D model

and it is shown that the resulting semi-analytical predic-
tions reproduce quite well the findings of the 2D simula-
tions, in particular the supersonic transitions. Moreover,
it offers an alternative derivation for Goldston’s estimate
and can be extended easily to an estimate including addi-
tional particle diffusion, therefore giving boundaries for

detailed studies of the drift-based transport with more
sophisticated fluid simulations.

The paper is structured as follows: In Section II the
basic equations of the 2D fluid model are presented and in
Section III the model tokamak geometry for the numer-
ical simulations are elucidated. Results for the density
profiles and flow velocities obtained by numerical solu-
tion of the 2D model are presented and discussed in Sec-
tion IV. Justified by these 2D results a 1D model reduc-
tion is derived and presented in Section V. In Section VI
further results from 2D simulations for varying plasma
parameters are presented, discussed and compared with
the predictions of the reduced 1D model. In Section VII
also the effect of an additional diffusive particle transport
is discussed on the basis of 2D simulations and a simple
extension of the 1D model as well. The concluding Sec-
tion VIII summarizes the results of this paper.

II. FLUID FORMULATION OF GOLDSTON’S

HEURISTIC MODEL

To study the consequences of Goldston’s ideas on the
drift-based SOL width in a tokamak geometry with X-
point and asymmetrical shaping a simplified model is
considered translating the ideas of the heuristic model
presented in [1] to a 2D fluid picture for the plasma dy-
namics. In a first stage the model consists of the balance
equations for particles and parallel ion momentum. The
electron and ion temperatures are assumed to be equal
and prescribed. Currents are neglected, i.e. u = v, where
u is the ion flow velocity and v the electron velocity. The
model equations for the particle density n and the paral-
lel ion velocity u‖ read

∂n

∂t
+∇ · (nu‖) +∇ · (nu∗) = Sn (1)
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∂

∂t

(

nu‖

)

+∇ ·
(

nu‖u‖

)

= −2∇‖p

mi
(2)

where

u∗ =
B×∇p

enB2
(3)

denotes the ion diamagnetic drift and u‖ is the parallel
ion velocity. The divergence of the diamagnetic particle
flux can be rewritten due to the following relation

∇ · (nu∗) = ∇ ·
(

B×∇p

eB2

)

= ∇ · (nu×) = u× · ∇p

T
(4)

The velocity u× is given as

u× =
T

e
∇× B

B2
=

2T

eB

B×∇B

B2
+

T

e

∇×B

B2
(5)

and is representing the particle guiding center drifts in
an inhomogeneous magnetic field [4; 5].

III. MODEL MAGNETIC FIELD CONFIGURATION

An axisymmetric magnetic fieldB is described in right-
handed orthogonal coordinates (r, θ, φ) by

B = Bθ
eθ +Bφ

eφ (6)

The coordinate r is a flux label. For a divergence free
field, i. e.

∇ ·B =
1

J

∂

∂θ

(

JBθ
)

= 0 (7)

the poloidal component Bθ must be of the form

Bθ =
B0 C

J
(8)

where C = C(r) is a flux label too, B0 is a constant and
J=er · eθ × eφ is the Jacobian. The function C(r) is di-
rectly related to the plasma current Ip and can be chosen
by requiring a particular value for the flux surface aver-
aged physical poloidal field 〈B̂θ〉 at the separatrix accord-
ing to an experimental setup and using the approximate
formula

〈B̂θ〉 =
µ0Ip

2πa
√

(1 + κ2)/2
(9)

where a is the minor radius and κ denotes the elongation
[? ]. The toroidal component is chosen in a tokamak like
form

Bφ =
B0R0

R2
(10)

where the functional relation for R as a function of r and
θ is given in the Appendix A by Eq. A2. The detailed
definition of the coordinates (r, θ, φ) based on a conformal

map is also presented in Appendix A. The explicit form
of the model equations Eqs. 1-2 for these coordinates is

∂n

∂t
+

1

J

∂

∂θ

(

J
Bθ

B
nu‖ + Jnuθ

×

)

+
1

J

∂

∂r

(

Jnur
×

)

= Sn

(11)

∂

∂t

(

minu‖

)

+
1

J

∂

∂θ

(

J
Bθ

B
minu

2

‖

)

= −2Bθ

B

∂p

∂θ
(12)

where the contravariant components of u× are

ur
× = − 2T

eB

Bφ

JB2

∂B

∂θ
, uθ

× =
2T

eB

Bφ

JB2

∂B

∂r
, (13)

The magnetic field geometry considered in this work is
sketched in Fig. 1 left, and profiles of the physical radial
component u× for this configuration are shown in Fig. 2
and in Fig. 3 top.
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FIG. 1 Model geometry for ASDEX like magnetic field based
on the conformal mapping presented in the Appendix A. On
the left the computational domain (with reduced number of
grid points to for clarity) is shown for R0=1.65 m, h=1.2 m
and rotation angle ξ=-0.15. The points in red label the inner
target (θ=-0.7), the points in blue the outer target (θ=6.98).
The separatrix is located at r=h and 0≤θ≤2π. The X-point
is located at θ=0 and θ=2π, respectively. The right figure
shows the equilibrium reconstruction of ASDEXUpgrade shot
No. 32291 at t=2 s serving as a template for the conformal
map in the left figure.

IV. 2D SIMULATIONS IN X-POINT GEOMETRY

The model equations Eqs. 11 and 12 are solved numer-
ically on orthogonal (r, θ)-grids of size Nr×Nθ=200×100
prepared by the conformal map of Appendix A. A
sketch of the computational grid (less resolution than
used in the simulations) is shown in Fig. 1. Standard
second order discretization is used for the spatial deriva-
tives. For the time stepping a second order Runge-Kutta-
scheme and a time step ∆t=1.0·10−8 is employed. The
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FIG. 2 Physical component of the radial component of ve-
locity u× defined by Eq. 5 being responsible for advection of
particles into and out of the SOL for the model geometry used
in this work and sketched in Fig. 1.

Kurganov-Tadmor central semi-discrete scheme is used
for the conservative part of the evolution equations [6].
At the targets sheath boundary conditions are imposed,
i. e. ∂n/∂θ=0 and u‖=±cs, where c2s=

√

2T/mi defines
the sound speed. For the outer boundary zero derivatives
are assumed for n and u‖ and at the separatrix the den-

sity is prescribed by a constant value 2·1019 m−3, whereas
the velocity gradient is set to zero, ∂u‖/∂r=0. The time
evolution of density n and flow velocity u‖ is followed un-
til a stationary state is obtained. The parameters chosen
were R0=1.65 m, h=1.2 m, C=0.2785, B0=2.5 T, T=75
eV and an ion mass mi=2 mp. The value for C provides

a separatrix averaged value 〈B̂θ〉=-0.28 T. The rotation
angle ξ has been chosen as -0.15 and additionally for some
cases a change in the direction of the toroidal field has
been considered. The Fig. 3 shows results for the sta-
tionary profiles n(θ) and u‖(θ) at r=1.0042 h, i. e. inside
the SOL and close to the separatrix. The correspond-
ing radial profiles of the density n(r) at the inner and
outer target and the inner and outer midplane are shown
in Fig. 4. The density profile in Fig. 3 shows a pro-
nounced maximum occuring in the central region where
the radial velocity ur

× is positive, therefore providing an
inflow from the core plasma into the SOL (see Fig. 3
top). One might expect that the poloidal component of
u× might introduce a flow reversal due to the appearance
of Pfirsch-Schlüter flows. Actually the poloidal compo-
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FIG. 3 (Color online) From top to bottom: profiles of the
radial physical component of the drift velocity u×, the density
n and Mach number vs poloidal angle θ for the magnetic
field configuration with ξ=-0.15. The green lines label the
points where ur

×=0. Additionally the center plot includes the
profile of the decay length Λ given by the numerical values of
|∂ lnn/∂r|−1.

nent of u× is more than 2 orders of magnitude smaller
than the poloidal projection of sound speed and does not
have a significant impact on the parallel flow. The most
striking result is the appearance of supersonic flows with
Mach number M=u‖/cs, c2s=2T/mi, being above 1 or
less than -1 in the velocity profile (Fig. 3 bottom). A
very important result of the 2D simulations is an almost
exponential decay of the density n∼e−r/Λ with respect
to the flux label r and Λ being almost constant along θ
inside the SOL and not to close to the separatrix. This
is illustrated by the red colored line in the mid figure of
Fig. 3 showing Λ=|∂ lnn/∂r|−1 and by the logarithmic
plots in Fig. 4 bottom. Right at the separatrix the re-
sults are considered as less significant, because the fixed
particle density boundary condition there is probably not
well suited to get a realistic picture for the inflow/outflow
conditions. For this reason the following discussion is
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FIG. 4 (Color online) Profiles of density n at the inner and
outer target and the inner and outer midplane in linear (top)
and logarithmic (bottom) representation. The black line in

the bottom figure is the fitting curve e−r/Λ where the averaged
value of Λ shown in Fig. 3 is used.

restricted to the region r>1.0042 h, where boundary ef-
fects do not play a significant role anymore (this has been
proved by the use of different boundary conditions).

V. 1D MODEL REDUCTION

Justified by the results of the 2D simulation described
in the section above it is assumed that

∂n

∂r
= −n

Λ
(14)

where Λ=const. Note that the physical decay length λ is
given by λ=

√
grrΛ, where the square root of the metric

coefficient grr determines the flux expansion factor fx of-
ten used in the analysis of scrape-off widths [2]. The flux
expansion fx can be understood as the ratio between the
values of

√
grr at the target and the outer midplane. Fur-

thermore, the model equations Eqs. 11-12 are simplified
by neglecting the poloidal component of the velocity u×,
any particle sources Sn and the terms due to the parallel
variation of B (except in the diamagnetic effects). These
assumptions were justified a posteriori by switching off
the particular terms in the 2D simulations and proving
that the results were not significantly changed. Based on
these assumptions the stationary case is described by a
one-dimensional model

u‖
∂n

∂θ
= −n

∂u‖

∂θ
+

B

Bθ

ur
×

Λ
n (15)

u‖

∂u‖

∂θ
= −2T

mi

∂n/∂θ

n
(16)

Combining these equations, and using the Mach number
M=u‖/cs and the logarithmic density N=lnn as depen-
dent variables, one obtains

(1−M2)
∂M

∂θ
= F, F =

B

Bθ

ur
×

Λcs
(17)

∂N

∂θ
= −M

∂M

∂θ
(18)

The solutions of Eqs. 17 and 18 are

M − M3

3
= K, K =

∫

B

Bθ

ur
×

Λcs
dθ + CM (19)

N = −M2

2
+ CN (20)

where CM and CN are constant. Depending on the par-
ticular value of K different solution branches for Eq. 19
and thus bifurcations are possible as illustrated by Fig. 5.
Inspection of Eq. 17 shows that the points where the drift
velocity ur

x is zero are of special interest because there
∂M/∂θ=0 and/or M=±1. Thus, if F=0 and ∂M/∂θ
and ∂F/∂θ are finite, a transition occurs to supersonic
parallel flow with |M |>1. Differentiation of Eq. 17 gives
a relation valid for such transition points

∂F

∂θ

∣

∣

∣

∣

|M|=1

= −2M

(

∂M

∂θ

)2

(21)

and it follows that if F=0 at a particular point and
∂F/∂θ>0 only a supersonic transition through M=-1 is
possible, whereas ∂F/∂θ<0 is compatible only with a
transition through M=+1. A situation relevant for the

-2/3
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+2/3

-1 0 +1

-2/3

0

+2/3

M

M-M3/3
K

FIG. 5 (Color online) Illustration of a graphical solution of
Eq. 19. If |K|<2/3 three solutions exist (example K=0.4
labeled by circles). For |K|=2/3 two solutions exist and for
|K|>2/3 only a single real solution is possible.

drift-based transport considered in this work is the exis-
tence of - at least - two possible transition points where
ur
×=0 (see Fig. 3 top). This is due to the fact that the
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diamagnetic flows always introduce both, regions of par-
ticle inflow and outflow in the SOL. Requiring M=±1 at
two consecutive transition points, with ur

× not changing
sign between these points, a conditional equation for the
decay length Λ results from Eq. 17

Λ =
3

4

∫
∣

∣

∣

∣

B

Bθ

ur
×

cs

∣

∣

∣

∣

dθ (22)

The integral is taken from one transition point to the
next one. This situation with two consecutive transition
points corresponds to the result for the Mach number
M shown in Fig. 3 bottom, where the green lines la-
bel the special points where ur

×=0. Using Eq. 22 the
solution branches of Eq. 19 can be calculated. The pos-
sible solutions for |M |=1 appearing at two points along
the magnetic field line are sketched in Fig. 6 by dotted
lines and compared with the results from the 2D simula-
tions of Fig. 3. The solution of the 2D simulations follow
closely the smooth solution branch of Eq. 19 connect-
ing the points of supersonic transition. Also the density

profile agrees well with the result n∼e−M2/2. The agree-
ment is optimal for the region between the two transition
points, where the particles are pushed across the spara-
trix into the SOL (highlighted in green in Fig. 6). Out-
side this region the agreement is not as good, but still
the 1D result gives a good qualitative description of the
solution found in the detailed 2D simulation. Therefore,
the analysis of the 1D reduced model explains the su-
personic flows in the results presented above. Of course,
not all features can be covered by the 1D consideration,
in particular because the assumption of a constant Λ is
not always justified for different magnetic field configu-
rations. However, the basic features of the profiles found
by 2D simulations are very well understood in the light of
the analysis of the simplified 1D model and, therefore, it
provides a good approximation for semi-analytical con-
siderations. Finally, it should be noted that for cylin-
drical geometry the integral in Eq. 22 can be estimated
via

ur
× ≈ 2T

eBR0

sin θ, Bθ ≈ B̂θ

a
(23)

where a is the minor radius and B̂θ the physical com-
ponent of the poloidal magnetic field. Integration for
0≤θ≤π gives for the scrape-off width

Λ =
3aT

eB̂θR0cs
(24)

and this result is - despite a factor of 4/3 - identical
with Goldston’s estimate for λ for singly charged ions
and atomic mass of 2 (Eq. 1 in [1]). Thus, the assump-
tion of supersonic transitions in the fluid model consid-
ered here offers an alternative derivation of Goldston’s
estimate for the scrape-off width. However, at this
point it is important to note that the simple expression
Eq. 22 - and even more the estimate Eq. 24 - giving a
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FIG. 6 (Color online) Profiles of Mach number and density
vs poloidal angle θ already shown in Fig. 3 but here comple-
mented by the results of Eq. 19. The region between the two
transition points is highlighted in green.

quick estimate for the SOL width and building a bridge
to Goldston’s approach has to be used with care. To il-
lustrate the subtleties just one additional example of 2D
simulations and the related 1D approximation should be
discussed here: the case with the same parameters used
to obtain the results of Figs. 3, 4 and 6, but with direc-
tion of the toroidal field reversed. The results analogous
to Fig. 3 are shown in Fig. 7. The basic change in the
setup occurs in the sign of the velocity u×, such that
the top figure shows just the same velocity profile as top
figure in Fig. 3 but with reversed sign. However, the re-
sults for the density and Mach number profiles shown in
the center bottom figure are very different to the case
discussed above. Now two maxima appear in the den-
sity profile, corresponding to the particle feeding in the
two regions with ur

×>0 and the velocity profile shows a
jump in the center region close to θ=π. Now supersonic
transitions occur at different locations and also a min-
imum, i. e. ∂M/∂θ=0, appears at a point with ur

×=0.
The most important differences with respect to the esti-
mates discussed above is the smaller value for Λ found
in the 2D simulations (the red curve in the center plot).
A closer inspection of these results shows that this re-
duced SOL width (Λ=1.23 mm instead of Λ=2.24 mm in
the case discussed above) can be related again to Eq. 22
but now for the points at θ=3.94 and θ=6.40 connect-
ing two supersonic transitions. It might be speculated
that the inflow regions with ur

×>0 determine the veloc-
ity profile and therefore transition points and SOL width
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FIG. 7 (Color online) Simulation for the parameters chosen
for Fig. 3 but with reversed toroidal magnetic field. From top
to bottom: profiles of the radial physical component of the
drift velocity u×, the density n and Mach number vs poloidal
angle θ for the magnetic field configuration with ξ=-0.15. The
green lines label the points where ur

×=0. Additionally the
center plot includes the profile of the decay length Λ given by
the numerical values of |∂ lnn/∂r|−1.

Λ. But the reason why the dynamical system is choos-
ing this region and not the other inflow region and why
∂M/∂θ=0 is resulting at one point and not |M |=1 is not
clear up to now. But this example demonstrates that the
details of the X-point geometry have a significant impact
on the SOL width, which is not taken into account in a
formula like Eq. 24. On the contrary it must be stressed
that the 1D reduced model derived here has been con-
firmed a posteriori using the numerical 2D findings but
for an extended discussion also the principal mechanism
for the Mach number profile to fulfill the general condi-
tion Eq. 17 must be known to get a more quantitative
picture.
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FIG. 8 (Color online) Dependence of Λ on the electron tem-
perature Te. Shown are the profiles of the inverse logarithmic
derivatives |∂ lnn/∂r|−1 overlaid by straight lines represent-
ing the results of Eq. 22 for Λ.
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FIG. 9 (Color online) Dependence of Λ on the poloidal mag-

netic field B̂θ . Shown are the profiles of the inverse logarith-
mic derivatives |∂ lnn/∂r|−1 overlaid by straight lines repre-
senting the results of Eq. 22 for Λ.

VI. SOL WIDTH IN PARAMETER SCAN

In this section results from 2D simulations are pre-
sented to examine whether the details of the X-point ge-
ometry have some effect on the basic relations Λ∼T 1/2

and Λ∼B̂−1

θ expressed in Goldston’s estimate. Several
simulations have been conducted for the ASDEX like
geometry with parameters chosen as in Section IV but
firstly for varying temperatures 5 eV ≤T≤ 500 eV and
secondly for varying poloidal magnetic field, i. .e. vary-
ing value of C in a range such that 0.028 T≤〈B̂θ〉≤0.56
T. The results for the profiles of the decay length
|∂ lnn/∂r|−1 are shown in in Figs. 8 and 9 in logarithmic
plots. For comparison also the result from Eq. 22 are
shown where Λ has been obtained by numerical integra-
tion between the central transition points. It can be seen
that the decay length obtained by the logarithmic deriva-
tive of the numerical profiles of the density in the SOL is
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to a large extent constant along the poloidal angle. Also
it is obvious that the values of Λ follow closely the ex-
pected functional dependence on T and B̂θ described by
Eq. 22. However, in some cases the precise values of Λ
can differ by a factor of 2-4 for inner and outer target
and with respect to the analytical result from Eq. 22, es-
pecially for low 〈B̂θ〉. In summary it can be concluded
that the numerical results confirm the linear functional
dependance on the poloidal Larmor radius ρp

Λ ∼ ρp, ρp =

√

2Tmi

e2B̂2

θ

(25)

but uncertainties remain concerning the proportionality
constant and in some cases the assumption of an overall
decay length is not justified. However, for most of the
cases considered the expression Eq. 22 gives a very precise
estimate for the SOL width found in the 2D simulations.

VII. DIFFUSIVE TRANSPORT AND SOL WIDTH

In this section 2D results from simulations including
homogeneous diffusive particle feeding of the SOL are
presented. For this purpose the model equations Eq. 1
and 11 are modified as follows (particle sources Sn ne-
glected)

∂n

∂t
+∇ · (nu‖) +∇ · (nu∗) = ∇ · (D⊥ ·∇n) (26)

∂n

∂t
+

1

J

∂

∂θ

(

J
Bθ

B
nu‖ + Jnuθ

×

)

+
1

J

∂

∂r

(

Jnur
×

)

=
1

J

∂

∂r

(

J
D⊥

grr

∂n

∂r

)

(27)

where D⊥ is a constant diffusion coefficient. The results
for varying values of D⊥ in the range between 0.001 m2/s
and 0.5 m2/s are shown in Fig. 10. Again the profiles
of the inverse logarithmic derivative of the density are
shown. For low values of D⊥ the profiles are rather flat
but for higher values of D⊥ the assumption of a constant
Λ is not justified anymore. For further analysis also the
averaged values of the numerically obtained decay length
are shown a straight horizontal lines in Fig. 10. Despite
the detailes of the profiles of the decay lengths it is ob-
vious that additional diffusion increases the SOL width
Λ changes significantly for D⊥>0.01 m2/s. For D⊥=0.2
m2/s it is about a factor of 5 larger than the drift-based
value. It is to be noted that the supersonic transitions do
not disappear completely for the range of D⊥ considered.
The averaged values 〈Λ〉 (the straight horizontal lines in
Fig. 10) are plotted again in Fig. 11 as a function of D⊥.
This plot is complemented by a fit based on the func-

tional Λ=Λ0

(

1 +
√

1 +D⊥/D∗

)

/2. which is motivated

by the following extension of the 1D model. Using the

2

3

4

5

6
7
8
9

10

0 π 2π

λ 
[m

m
]

θ [rad]

D=0.001 m2/s
D=0.002 m2/s
D=0.005 m2/s
D=0.010 m2/s

D=0.020 m2/s
D=0.050 m2/s
D=0.100 m2/s
D=0.200 m2/s

FIG. 10 (Color online) Dependence of Λ on the additional
particle diffusion characterized by D⊥. Shown are the profiles
of the inverse logarithmic derivatives |∂ lnn/∂r|−1 overlaid by
straight lines representing its respective θ-averaged value.

same assumptions as in Section V the equation Eq. 15 is
replaced by

u‖
∂n

∂θ
= −n

∂u‖

∂θ
+

B

Bθ

(

ur
×

Λ
+

D⊥

Λ2grr

)

n (28)

and the equation for the Mach number M becomes

M − M3

3
=

∫

B

Bθ

(

ur
×

Λcs
+

D⊥

Λ2grrcs

)

dθ + CM (29)

Therefore, a quadratic equation for Λ results

c2Λ
2 − c1Λ − c0D⊥ = 0 (30)

where

c2 = M2 −
M3

2

3
−M1 +

M3
1

3
(31)

and

c1 =

θ2
∫

θ1

Bur
×

Bθcs
dθ, c0 =

θ2
∫

θ1

B

Bθgrrcs
dθ (32)

Here M1=M(θ1) and M2=M(θ2) are the Mach numbers
at the integration boundaries. The problem in solving
equation Eq. 30 is the lack of appropriate integration
limits θ1 and θ2. In Section V the transition points with
|M |=1 offered a reasonable choice. For the drift-diffusive
problem of Eq. 29 such a choice is not obvious. However,
the solution of Eq. 30 can be written in the form

Λ =
Λ0

2

(

1 +

√

1 +
D⊥

D∗
⊥

)

(33)

with Λ0 the decay length in drift limit and D∗
⊥ a scaling

diffusion coefficient

Λ0 =
c1
c2
, D∗

⊥ =
c21

4c0c2
(34)
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This gives reason to the particular fit function used in
Fig. 11. which gives Λ0=2.27 mm and D∗=8.08·10−3

m2/s. Therefore, even a particle diffusion of D⊥=0.01
m2/s, which is relatively low compared to typical edge
transport simulations, is enough to cover the effects of
drift-based transport and its related SOL width com-
pletely. This is of importance for future studies with
more sophisticated numerical approaches. Also the exis-
tence of transition points located at ur

×=0 might give a
hint for experimental proof of the dominance of the drift-
based particle transport underlying the heuristic model
of Goldston.

1

3

6

9

12

 0  0.2  0.4  0.6  0.8  1

λ 
[m

m
]

D [m2/s]

fit
<L>

FIG. 11 (Color online) Dependence of Λ on the additional
particle diffusion characterized by D⊥. The points in red are
the θ-averaged values 〈|∂ lnn/∂r|−1〉 as found in Fig. 10 from
the numerical solution of the 2D model. The blue line rep-

resents a fit of the form Λ0/2
(

1 +
√

1 +D⊥/D∗

)

motivated

by the 1D estimate Eq. 33 with fit parameters Λ0=2.27 mm
and D∗=8.08·10−3 m2/s.

VIII. CONCLUSIONS

• The parametric dependence of Goldston’s estimate for
the scrape-off particle width has been assessed by 2D
simulations in X-point magnetic configurations sup-
ported by a 1D approximative model. The functional
dependencies of Goldston’s λ-formula have been con-
firmed.

• The simulations indicate that in situations where the
radial particle transport in the SOL is dominated by
the diamagnetic drift effect supersonic transitions are
likely to occur. Even though a supersonic transition
can be caused also by magnetic compression effects.
On the other hand, the particular location for such
a transition to occur is inevitably connected with the
points where the radial drift is zero in case the drift-
based transport is dominant. This differs completely
from the diffusion dominated case and might give a
hint for experimental proof.

• The inverse B̂θ dependence is confirmed but for a quan-
titative calculation of the scrape-off width it is of im-
portance to use the local value in the region of particle

inflow from the core into the SOL to get the right pro-
portionality factor.

• An additional particle diffusion increases the decay
length Λ significantly even for moderate diffusivities
compared to typical values used for anomalous diffu-
sion in transport codes. Therefore, studies on the drift-
based effects should be pushed to the numerically more
challenging limit of very small particle diffusion in the
range of D⊥∼10−2 m2/s and beyond.
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APPENDIX A: Magnetic field configuration and conformal

mapping

A conformal map R + iZ=f(r, θ) is defined where R
and Z are related to Cartesian coordinates via

x = R cosφ, y = R sinφ, z = Z (A1)

and f is chosen as

f =
(

R0 − e−iϑ
√

r2 − h2 e2iϑ
)

eiξ

+
(

1− eiξ
)

(R0 + iZ0)

(A2)

The coordinate ϑ is given as a function of θ

ϑ =
π

2 erf(3π/s)

[

erf

(

3π

s

)

− erf

(

3 π − θ

s

)

+erf

(

π + θ

s

)

− erf

(

π − θ

s

)]

(A3)

The Eqs. A1-A3 define the transformation between the
coordinate functions (x, y, z), (R, φ, Z) and (r, θ, φ). Due
to the properties of conformal maps the coordinates
(r, θ, φ) are right-handed orthogonal. Their coordinate
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lines are similar to tokamak X-point geometries with
X-point being located at r=h and θ=0. This mapping
of an X-point tokamak field onto an orthogonal grid in
the (r, θ)-plane is particularly suitable for numerical ap-
proaches. Note that for h→0, ∂ϑ/∂θ=1, a circular ge-
ometry is recovered. The parameters R0, Z0, ξ and s
are introduced to translate and rotate the grid and to
control the resolution close to the X-point. The point
(R0, Z0) defines the center of rotation in the (R,Z)-plane
and ξ denotes the rotation angle. A parameter s>1 is
used to increase the density of grid points close to the X-
point while the grid points are still equidistant on the θ-

coordinate lines. An example of a resulting grid is shown
in Fig. 1. The tranformation is characterized by the Ja-
cobian J=er · eθ × eφ

J =
R

r

∂ϑ

∂θ

r4√
r4 − 2 h2 r2 cos 2ϑ+ h4

(A4)

and the metric coefficients grr, gθθ and gφφ

grr =
J

rR

1

∂ϑ/∂θ
, gθθ =

rJ

R

∂ϑ

∂θ
, gφφ = R2 (A5)


