Plasma internal profile control using IDA-PBC: Application to TCV
Plasma internal profile control using IDA-PBC:
Application to TCV

N.M.Trang VU*, R. NOUAILLETASa, E. MALJAARSB, F. FELICIB, O.SAUTERC, TCV TeamC

*CEA, IRFM, F-13108 Saint-Paul-Lez-Durance, France
aEindhoven University of Technology, Faculty of Mechanical Engineering, Control Systems Technology Group, P.O. Box 513, 5600 MB
Eindhoven, The Netherlands
bÉcole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland

Abstract
In this paper, new results of plasma \(\tau \)-profile and \(\beta \) control on TCV, using total plasma current \(I_p \), and ECCD (Electron Cyclotron heating and Current Drive) heating source have been discussed. The control model is governed by the resistive diffusion equation coupled with the thermal transport equation, written in PCH (Port-Controlled Hamiltonian) formulation. The IDA-PBC (Interconnection and Damping Assignment - Passivity based Control) controller is developed and tested on simulation as well as on TCV real plant. Two test scenarios are considered: \(\tau \) control only, and \(\tau \) and \(\beta \) control. The spatial distributions of ECCD profiles are pre-defined and only input powers are used for control design. Thus, a stationary control is defined in order to consider all non-linearity and actuator constraint, and a linear feedback IDA-PBC will ensure the convergence speed and the robustness of the closed-loop system. The obtained results are encouraging towards using routinely such plasma advanced control algorithm in a near future.

Keywords: Tokamak plasma control, plasma current profile control, Port-Controlled Hamiltonian systems, IDA-PBC control

1. Introduction
The control of plasma current density profile or \(\tau \)-profile and \(\beta \) (a measure of the temperature) is a key issue to achieve advanced plasma scenarios with high repeatability. The 1D resistive diffusion equation of the magnetic flux [2, Chap.6] is commonly used for the plasma current profile control, such as model predictive control [6]; optimal tracking problem [8]; passivity using Lyapunov approach [1], or sliding mode [4], etc. Among these control strategies, the IDA-PBC (Interconnection and Damping Assignment - Passivity based Control) based on PCH (Port-Controlled Hamiltonian) tokamak system is a promising method which has been originally developed for WEST [10]. The extended model that includes MHD couplings as well as thermal diffusion for a better plasma current profile control is also studied in [11] with the application to TCV.

The purpose of this paper is to discuss about new simulation and experimental results of the IDA-PBC controller on TCV. The developed controller allows to stabilize \(\tau \)-profile and \(\beta \) around the desired references by three actions: plasma total current \(I_p \), distributed non inductive current-drive \(J_{ext} \) and external heating source \(S_{heat} \).

Two scenarios are considered in TCV experiments. The first one is \(\tau \) control only case where only resistive diffusion equation is used with two control actions \(I_p \) and \(J_{ext} \), \(S_{heat} \) is pre-defined by the plasma scenario. In the second one, non-linear MHD couplings and thermal-electromagnetic model are investigated, the control law thus includes the total heating power \(S_{heat} \).

The main idea of IDA-PBC is recalled in the next section. In Section 3 the controlled plant is described, as well as the governing equations for the resistive diffusion and the thermal diffusion problems written in PCH formulation. In Section 4, the control issues of the considered system are presented, a control strategy is proposed to overcome these problems. Simulation results using RAPTOR code [3] for the TCV configuration are presented in Section 5. Based on these previous simulation tests, the IDA-PBC controller has been implemented and tested on the TCV real-time control system. Preliminary results are showed in Section 6. The paper ends with some conclusions and prospects for the future works.

2. IDA-PBC closed-loop control for PCH systems
The IDA-PBC control design [7] may be considered the most general method among Passivity Based Control (PBC) designs for PCH systems. A brief theorem of IDA-PBC methodology is given hereafter.
Theorem. If it exists a static IDA-PBC feedback $u_{IDA}(x)$ which transforms a canonical PCH system into a desired one:

$$\dot{x} = [J(x) - R(x)] \frac{\partial \mathbb{H}_d}{\partial x}(x) + g(x)u(t)$$

$$u_{IDA} = [J_d(x) - R_d(x)] \frac{\partial \mathbb{H}_d}{\partial x}(x)$$

then the closed-loop system is stable (locally) at $x_d = \arg \min \mathbb{H}_d(x)$. The feedback control can be derived from the matching equation:

$$[J(x) - R(x)] \frac{\partial \mathbb{H}_d}{\partial x}(x) + g(x)u_{IDA}(x) = [J_d(x) - R_d(x)] \frac{\partial \mathbb{H}_d}{\partial x}(x)$$

(2.2)

where $x \in \mathbb{R}^n$ the energy state variables, $u, y \in \mathbb{R}^m$ the input - output variables; \mathbb{H} Hamiltonian function (total energy); $J = -J^T \in \mathbb{R}^{n \times n}$ skew interconnection matrix, $g \in \mathbb{R}^{n \times m}$ control matrix, and $R = R^T \in \mathbb{R}^{n \times n}$ dissipation matrix; $J_d = -J_d^T$; $R_d = R_d^T$ desired parameters, and $\mathbb{H}_d(x)$ desired total energy.

The feedback control law will be derived simultaneously with an appropriate choice of the tuning parameters J_d, R_d and \mathbb{H}_d. The readers can refer to [7] or [10] for the discussion of matching equation solutions.

3. Controlled plant description

The simplified tokamak plasma model (figure 3.1) is a multi-physics system governed by Maxwell’s equations in the electromagnetic domain, as well as energy balance equations in the material domain. The considered system is assumed quasi-static equilibrium [2, Chap. 6]. Therefore, only the thermodynamics associated with heat transport equation is presented in the material domain. Two strong couplings between electromagnetic and thermal domains are Lorentz force and Joule effect. The couplings in the resistivity η, in the thermal diffusion coefficient χ as well as in the bootstrap current J_{bs} are all considered.

Figure 3.1 also presents different actuators in each domain for plasma heating: ohmic heating by inductive current at the plasma edge I_p, non-inductive current drive J_{ext} and heat flow S_{heat}. The mass injection is used to control the plasma density by an independent system and is not considered.

The control objective is to reach a predefined ι profile and β using I_p, J_{ext} and S_{heat}.

3.1. Resistive diffusion control model

The so-called resistive diffusion equation [2, Chap.6] has been widely used for the plasma current density profile control, or ι-profile control. An equivalent model in PCH formulation was developed in our previous work[10]. Generally, this model is derived from Maxwell’s equations in the normalized 1D coordinate $z = \eta / \mu_{max} \in [0, 1]$:

(3.1)

The bold variables d, b, J_{bs} and J_{ext} stand for the time-varying coefficients of respectively the electric field, the magnetic field, the bootstrap current density and the external current source density. The interconnection matrix $\mathbb{J}_{EM} = -\mathbb{J}_{EM}^T$ is obtained from the discretization (and reduction) of the spatial derivation ∂_z in the approximation bases; J_4 relates to the boundary effect. The dissipation matrix R_{EM} is computed from the resistivity $\eta(\iota, t)$. The electromagnetic energy \mathbb{H}_{EM} is defined as a quadratic function, where G_{eM} and G_{mM} are symmetric positive and represent, respectively, the electric permittivity ε_0 and the magnetic permeability μ_0.

3.2. Coupled control system

The influence of controlled temperature T on certain parameters in electromagnetic domain, such as the resistivity $\eta(T)$ and the bootstrap current $J_{bs}(\partial_z T)$, is not negligible. Therefore, a coupled control model including the resistive diffusion and the thermal diffusion, was investigated in [11]:

$$ \begin{pmatrix} \partial_t d \\ \partial_t \iota \end{pmatrix} = (\mathcal{J} - \mathcal{R}) \begin{pmatrix} \partial_t \mathbb{H}_{EM} \\ \partial_t \mathbb{H}_{EM} \end{pmatrix} + \begin{pmatrix} -J_{ext} - J_{bs} \\ J_{4} \end{pmatrix}$$

S_{heat}

(3.2)

where $\mathcal{J} = \begin{bmatrix} \mathcal{J}_{EM} & 0 \\ 0 & \mathcal{J}_T \end{bmatrix}$, $\mathcal{R} = \begin{bmatrix} \mathcal{R}_{EM} \left(\frac{1}{\eta} \right) & 0 \\ 0 & \mathcal{R}_T(\chi) \end{bmatrix}$, $\partial_t \iota$, f_η and S_{heat} are the time-varying coefficients of respectively the entropy, the heat flux and the external heating source; $\mathcal{J}_T = -\mathcal{J}_{EM}^T$ is similar to \mathcal{J}_{EM}, $\mathcal{R}_T = \mathcal{R}_T^T \geq 0$ is derived from the thermal diffusion coefficient χ, and \mathcal{H}_T is the thermal energy.

The MHD couplings - including the terms $J_{bs}(\iota, T, \partial_z T)$, $\eta(T)$, and $\chi(\partial_z T, b)$ are estimated.
by the empirical analytic expressions given in [9]:

\[
\eta(T) = C_\eta(b) T^{-3/2}, \\
\chi(<b, T, b>) = C_\chi(b) \frac{\partial T}{\partial b}, \\
J_{bs} = C_{bs}\left(\frac{1}{b}\right) S_{heat}
\]

where \(C_\eta\), \(C_\chi\), and \(C_{bs}\) are the coefficients depending on the system state.

Remark: Due to the different orders of magnitude between \(T\) and \(b\) and the different timescales in plasma dynamics between heat diffusion (~ \(10^{-3}\)s) and magnetic field radial diffusion (~ \(10^{-1}\)s), the temperature can be considered as a static steady-state for the coupling calculation.

4. Control issues and strategy

Challenges in tokamak control arise not only from the PDE resolution and the non-linear MHD couplings, usually badly estimated, but also from the technological constraints of the actuators. In the considered facility, two ECCD clusters (co-current and counter-current) generate both non-inductive current \(J_{ext}\) and external heating source \(S_{heat}\). In practice, these distributed control signals have pre-defined deposition profiles \((f_A, f_B\) for current drive and \(f_{heat}\) for heating source). The controllable inputs are indeed the two input powers \(P_A\) and \(P_B\). We assume in this work that the two clusters deposit heat in the same location, which allows to approximate \(S_{heat}\) by the sum of \(P_A\) and \(P_B\):

\[
\begin{align*}
J_{ext} &= f_A(z, t) P_A + f_B(z, t) P_B \\
S_{heat} &= f_{heat}(z, t) P_{heat} \approx f_{heat}(z, t) (P_A + P_B)
\end{align*}
\]

The proposed controller in figure 4.1 first derives a stationary feedforward control from the given references, by non-linearly inverting the plasma PCH models in (3.1) or (3.2). The stationary control allows to take into account both system non-linearity and control deposition profile constraint. A linear IDA-PBC is used to improve the convergence speed of the closed-loop system. Computation details are referred to [10] and [11].

5. Test scenarios and simulation results

In the sequel, the \(\iota\)-profile and \(\beta\) controls using PCH model and IDA-PBC method are tested with RAPTOR offline code [3] developed for TCV. Two test cases are considered:

- \(\iota\)-profile control only case: only the resistive diffusion equation (3.1) is considered, thus two actuators \(P_A\) and \(P_{ext}\) are included in the control law; \(S_{heat}\) is given. In this case, we aim at two positions of \(\iota\)-profile \(z = [0.1, 0.5]\).

- \(\iota\)-profile and \(\beta\) control case: the coupled control model (3.2) is considered. All three actuators \((I_p, P_{ext}, P_{heat})\) are used in order to handle two \(\iota\) values (at \(z = [0.1, 0.5]\)) and \(\beta\).

Figure 5.1 shows very good simulation results for both test cases. It is obvious that the controller doesn’t respect the \(\beta\) reference in the first case (figure 5.1.a) since the thermal model isn’t included. Otherwise, the controller can handle both \(\iota\) and \(\beta\) in the second test case (figure 5.1.b).

![Figure 4.1: The proposed control strategy](image)

Figure 4.1: The proposed control strategy

![Figure 5.1: IDA-PBC control for case 1 (a) and case 2 (b)](image)

Figure 5.1: IDA-PBC control for case 1 (a) and case 2 (b)
is used as observer in the TCV real-time control system (figure 6.1).

In this occasion, we could only have one shot for the first test case: t control only (figure 6.2). The controller was switched on on $t = [0.7s, 1.5s]$. Unfortunately, the I_p control was not available for this shot. We could only regulate P_A and P_B, hence we aimed to control the ι profile only at the position $z = 0.1$. Notice that $P_A + P_B$ was given in this test case. The experiment showed a pretty good result at the considered ι value. An integrator [11] was also used in order to approach the other ι values to the references.

7. Conclusion

The paper presents new results of IDA-PBC design for ι-profile and β control, applied to TCV. A control strategy is defined, which combines a non-linear stationary feedforward term, based on PCH tokamak model, in order to overcome the system non-linearity and the actuator deposition profile constraint; and a linear IDA-PBC feedback term to improve the convergence speed and the robustness. The controller has been successfully tested on RAPTOR simulation and it got a very first result in TCV experiments. Nevertheless, the control law needs to be improved and tested more on real-time tokamak systems for a routine use in the future.

Acknowledgment

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

References