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J. M. Garćıa-Regaña1,2, C. D. Beidler2, R. Kleiber2, P.

Helander2, A. Mollén2, J. A. Alonso1, M. Landreman3, H.

Maaßberg2, H. M. Smith2, Y. Turkin2 and J. L. Velasco1

1 Laboratorio Nacional de Fusión Ciemat, Av. Complutense 40, 28040 Madrid, Spain
2 Max-Planck-Institut für Plasmaphysik, Wendelsteinstr. 1, 17491 Greifswald,

Germany
3 Institute for Research in Electronics and Applied Physics, University of Maryland,

College Park, Maryland 20742, USA

E-mail: jose.regana@ciemat.es

Abstract. The particle transport of impurities in magnetically confined plasmas

under some conditions finds neither quantitatively nor qualitatively a satisfactory

theory-based explanation. This compromises the successful realization of thermo-

nuclear fusion for energy production since its accumulation is known to be one of

the causes that leads to the plasma radiative collapse.

In standard reactor-relevant conditions this accumulation is in stellarators intrinsic to

the lack of toroidal symmetry, and results from the radially inwards neoclassical electric

field predicted by the theory. The high charge state of the impurities particularly makes

its transport more sensitive to the electric fields. Consequently the short length scale

turbulent electrostatic potential or its long wave-length variation on the flux surface

Φ1, that the standard neoclassical approach usually neglects, can possibly shed some

light on the experiments where a satisfactory explanation has not yet been found, e.g.

[1, 2],

In the present work we have considered different stellarator configurations and assessed

the impact that Φ1 has on the radial particle transport of selected impurities. The

results for LHD show that Φ1 can strongly modify it, resulting in large deviations of

the level of inward impurity flux predicted by the standard neoclassical theory in most

cases. In Wendelstein 7-X, on the contrary, Φ1 is significantly smaller and, for the

parameters considered, its effect only appreciable for high charged impurities. Finally,

in TJ-II the potential variation leads to appreciable changes on the impurity radial

flux although not to the extent its large amplitude might lead one to think. The

dependence on the chosen parameters and open questions for future developments are

discussed.

1. Introduction

When a plasma is confined by means of a magnetic field, B, an electric field, E = −∇Φ,

invariably also arises. Because of the high conductivity of the plasma along the magnetic

field, the electric field is mostly perpendicular to B, but also has a small component
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within the flux surface. In other words, the electrostatic potential can be written

as Φ = Φ0(r) + Φ1, where Φ0(r) is constant on magnetic surfaces (labelled by the

coordinate r) and Φ1 varies over such surfaces. This is true both in axisymmetric and

non-axisymmetric magnetic fields, but the mechanisms creating the electric field are

very different.

1.1. Radial electric field

We shall refer to the electric field perpendicular to the flux surface as radial, E0 =

−∇Φ0 = Er∇r, and first note that, in an axisymmetric magnetic field such as that

of a tokamak, plasma transport is independent of Er to a good approximation. Both

the collisional transport and that arising from gyrokinetic turbulence are independent

of the radial electric field to lowest order in the normalised gyroradius, ρ∗ = ρi/L, and

the Mach number M = V/vT i, which we take to be much smaller than unity [3, 4].

Here, ρi = vT i/Ωi denotes the ion gyroradius, vT i the ion thermal velocity, Ωi the gyro-

frequency, L the macroscopic length scale (such as the major radius) and V the plasma

flow velocity, the perpendicular component of which for the bulk ions with mass mi,

density ni and pressure pi is equal to

V⊥ =
(E−∇pi/nie)×B

B2

and is thus controlled by the radial electric field if this is large enough. If B is

axisymmetric, then the effect of Er on the transport is small in the parameters ρ∗
and M . This property is usually referred to as intrinsic (or automatic) ambipolarity.

There is a simple reason for it: in a coordinate system rotating toroidally with a velocity

U, the electric field is equal to E+U×B (where E denotes the field in the laboratory

frame) and its radial component can be made to vanish by choosing U appropriately.

In such a frame, the physics is the same as in the laboratory frame, except that there

is a centrifugal force and a Coriolis force. The former is quadratic in the Mach number

and therefore does not matter to first order in M , and the Coriolis force on a mass m

moving with velocity v is equal to

Fc = 2mv × ω,

where ω is the angular rotation frequency corresponding to the velocity U. Because it

has the same form as the Lorentz force on a charge q, it can be accounted for in the

kinetic equation by adjusting the magnetic field according to

B → B+
2m

q
ω,

which is a very small change, mω/qB ∼ ρ∗M . The effects of both the centrifugal

and Coriolis forces are thus quadratic in the small parameters ρ∗ and M . The kinetic

equation for the plasma in the rotating frame is thus locally identical to that in the

laboratory frame to first order in these parameters, and we conclude that the radial
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electric field cannot affect the behaviour of the plasma in this order, at least not locally.

(A sheared electric field can however have an effect on turbulence, and even an unsheared

field can affect turbulence through non-local effects.)

In a non-axisymmetric magnetic field, the neoclassical transport is not ambipolar unless

the field is quasi-symmetric, and the radial electric field is set by the requirement that the

ion and electron particle fluxes across magnetic surfaces should be equal. However, the

turbulent transport remains ambipolar even in non-axisymmetric fields if the turbulent

fluctuations satisfy the gyrokinetic equations [4, 5]. The radial electric field is determined

by neoclassical transport processes alone in non-axisymmetric and non-quasisymmetric

magnetic fields [6] (an exception occurs on small radial scales comparable to the ion

gyroradius, on which zonal flows may arise). This is in stark contrast to tokamaks,

where the radial electric field is controlled by the transport of angular momentum, which

is a higher-order process in ρ∗ and therefore difficult to calculate, both in neoclassical

and in gyrokinetic theory [7, 8].

In a stellarator, the radial electric field affects the neoclassical particle flux of each

species a, which is governed by a transport law of the form

〈Γa · ∇r〉 = −na

∑

b

[

Dab
1

(

d lnnb

dr
− qbEr

Tb

)

+Dab
2

d lnTb

dr

]

, (1)

where na denotes the density, Ta the temperature, qa = Zae the charge, and the sum

is taken over all the species b present in the plasma. The terms with b 6= a are due

to the friction along B between the different species and are in stellarators usually

negligible in comparison with the b = a term at low collisionality. The terms with

b 6= a are therefore usually neglected in numerical codes [9]. The term proportional to

the radial electric field is absent in axisymmetric systems but tends to cause relatively

strong inward transport of highly charged impurities in stellarators, since Er is usually

negative.

1.2. Electric field within flux surfaces

The electric field within the magnetic surface, E1 = −∇Φ1, has received less attention

in the literature. It is usually relatively small, but can have a substantial effect on highly

charged impurities with charge numbers Z ≫ 1. There are a few different mechanisms

that can cause such a field to appear.

First, axisymmetric plasmas can rotate rapidly in the toroidal direction. In tokamaks

with strong neutral-beam injection, the Mach number can become order unity, so that

the centrifugal force becomes comparable to the pressure gradient. The bulk ions are

then driven to the outboard side of each flux surface, and a poloidal electric field

(directed toward the inboard side) arises to maintain quasineutrality [10, 11]. For heavy

impurities, the force from this electric field is smaller than the centrifugal force, so the

impurities are pushed to the outboard side of the flux surface.

Second, fast ions from neutral-beam injection or ion-cyclotron-resonance-heating
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(ICRH) usually have anisotropic pressure and are therefore not evenly distributed over

flux surfaces. For instance, ICRH-heated minority ions reside mostly on the outboard

side, and a poloidal electric field directed to the inboard side is again required to make

the plasma quasineutral. Impurity ions therefore accumulate on the inboard side [12].

Third, even without fast rotation or fast ions, the plasma has a natural tendency to

produce a poloidal electric field. In a tokamak, this electric field is relatively small, as

can be seen from the ρ∗-expansion of the drift kinetic equation, which we write as

Ṙ · ∇fa + v̇‖
∂fa
∂v‖

= Ca(fa),

where the derivatives are taken at constant magnetic moment, µ = mav
2/2B, and R

denotes the guiding centre position. To zeroth order in ρ∗, there is no magnetic drift

and the E×B drift can be transformed away as described above, so that

Ṙ = v‖b,

v̇‖ = −µb · ∇B − Zae

ma

b · ∇Φ,

where b = B/B, ma denotes the mass. The electrostatic potential is determined by the

quasineutrality condition
∑

a

Zae

∫

f0ad
3v = 0,

and one finds that Φ1 vanishes in this order [3], implying that eΦ1/T ∼ ρ∗, where T is

the temperature. From the first-order kinetic equation, one finds that the electrostatic

potential is small in the collisionality, too, so that eΦ1/T ∼ ρ∗ν∗, where ν∗ = νL/vT
denotes the collisionality and vT the thermal speed [13].

In a stellarator, the situation is more complicated, and the poloidally (and toroidally)

varying part of the electrostatic potential can be significantly larger. This has to do with

the mechanism through which the radial electric field causes the cross-field transport

to be ambipolar. The diffusion coefficients in equation 1 tend to be larger for the ions

than for the electrons, so an inward-pointing radial electric field arises to reduce the flux

of the ions and enhance that of the electrons to ensure ambipolarity. It is clear from

equation 1 that the required electrostatic potential must be of order

eΦ0

T
∼ 1.

On the level of particle trajectories, the reduction of the ion transport occurs because

E0 × B drift convects locally trapped ions poloidally around the torus, and thereby

limits the radial step size in their collisional random walk. However, as explained in

Refs. [14, 15], the radial width of the resulting trajectories is such that the density

develops an in-out asymmetry on each flux surface, and to keep the plasma quasineutral,

a poloidal electric field is established. In these references, the electric field was calculated
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in the case of circular flux surfaces and was found not to scale with ρ∗, but roughly as

eΦ1

T
∼ fT∆B

B
, (2)

where ∆B is the variation of the magnetic field strength over the flux surface and fT
the fraction of trapped particles. This ratio is usually smaller than unity by some

considerable (but not very large) margin, so that the variation of the electrostatic

potential over flux surfaces is modest. This variation causes an additional E1 × B

drift across the flux surfaces which adds to the radial neoclassical transport, but the

effect is not very large for the bulk ions and electrons [15]. For moderate to highly

charged impurity ions, the effect can however be substantial.

1.3. Effect on impurity ions

The neoclassical transport of impurity ions has long been an issue of concern. Since the

total transport must be ambipolar, the outward flux of bulk ions must necessarily either

be accompanied by a similar electron flux or be balanced by an inward impurity flux. In

tokamaks, the neoclassical electron transport practically vanishes, and in stellarators,

the inward electric field makes the second term in equation 1 for impurities a factor Za

larger than the other terms, so in both cases impurity accumulation tends to arise.

However, standard neoclassical theory assumes that all densities are constant over flux

surfaces. Since the density tends to follow a Boltzmann distribution function within

such surfaces,

na ∝ exp

(

−ZaeΦ1

Ta

)

,

in particular impurities with Za ≫ 1 will tend to develop in-surface density variations

in response to Φ1. Highly charged impurities also experience a relatively large parallel

friction force from the bulk ions, which also leads to a density variation. Furthermore,

the collisionless orbits also tend to get modified by Φ1, because the electric force along

the field Zaeb · E1 can compete with the mirror force ,

Ze∇‖Φ1

µ∇‖B
∼ ZeΦ1

T
, (3)

if ZfT∆B/B is of order unity. Electrostatic trapping is then as important as magnetic

trapping. For these reasons, the neoclassical transport of heavy impurity ions can be

affected significantly, both in tokamaks [16, 17, 18] and in stellarators [19, 20]. In

tokamaks, the most noticable effects arise because of the potential variation caused by

anisotropic fast ions, which can dramatically affect both the size and the magnitude of

the transport [21].

2. Mathematical and numerical treatment

It is not entirely straightforward to construct an ordering of the various terms in

the drift kinetic equation that is both rigorous and adequately describes the effect
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of the electric field whilst still retaining the radially local character of conventional

neoclassical transport theory. Different alternatives were recently discussed and

compared numerically by Landreman et al [22], who however neglected Φ1 in their

treatment. We shall adopt their most complete model (called full trajectories in their

paper), and extend it to include Φ1. The full equations of guiding center motion are

Ṙ = v‖b+
b×∇Φ

B
+ vd (4)

v̇‖ = − 1

mav‖
Ṙ · (µ∇B + Zae∇Φ) , (5)

µ̇ = 0. (6)

and the simplified local ones are

Ṙ = v‖b+
b×∇Φ0

B
, (7)

v̇‖ = − µ

ma

b · ∇B − v‖
B2

(b×∇B) · ∇Φ0 −
Zae

ma

b · ∇Φ1, (8)

µ̇ = 0. (9)

2.1. The code EUTERPE and solution of the drift kinetic equation

For the integration of the equations of motion and calculation of the radial impurity

fluxes and electrostatic potential variation Φ1, the Monte Carlo δf Particle-in-Cell (PIC)

code EUTERPE [24] has been employed. The details of the numerical method can be

found in Ref. [25], but succinctly it can be summarised as follows.

The method considers a splitting of the distribution function f for any kinetic species

present in the problem as f = f0 + δf , prescribing an analytically known part f0 and

a departure from this δf , which is represented by a set of Monte-Carlo markers. The

equation to solve for the δf part can be expressed in all generality as

dδf

dt
= −df0

dt
+ C(f), (10)

with C(f) the collision operator.

The code is multi-species, the gyro-kinetic version is electro-magnetic and considers the

full flux surface and radial domain. The neoclassical version applied to the present

problem is local instead, as no drift across the flux surface remains in equation 7,

and binds the radial position of each marker to its value at the initialization. To solve

equation 10 a standard two weight scheme [26, 27] is applied, with δf and f0 represented

by
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δf =
∑

p

w1pδ (z− zp)J −1 (z) , (11)

f0 =
∑

p

w2pδ (z− zp)J −1 (z) , (12)

with z = {R, v‖, µ} the phase space coordinates, δ the Dirac delta function, w1 and w2

the marker weights, p the marker index, J the phase space Jacobian. Denoting the full

guiding centre equations 4 to 6 by ż and the reduced local ones 7-9 by ż0, the following

expressions for the evolution of the marker weights can be derived,

ẇ1p = −w2p

f0

(

żi
∂f0
∂zi

)

, (13)

ẇ2p =
w2p

f0

(

zi0
∂f0
∂zi

)

, (14)

where the summation over repeated indices is assumed. In eqs. 13 and 14 the collision

operator is assumed to consist only of the test particle term C(δf, f0) describing the

collisions of the δf on the f0 background. This, in turn, has been approximated by

a Lorentz pitch-angle scattering operator in the calculations below, where the collision

frequency for the species a is the sum of the deflection collision frequencies with all

plasma species b (including like-particle collisions for which a = b), that is νa =
∑

b ν
D
ab.

In a typical simulation the integration of the collisionless characteristics of each

marker is then followed by a process simulating the pitch-angle scattering. This

collisional step is carried out by assigning a random kick to the pitch-angle variable

ξ = atan
(

v‖/v⊥
)

. If the parallel and perpendicular velocity components of a given

marker before the collision are dessignated v‖in and v⊥in respectively, and the initial

value of the pitch-angle variable is ξin = atan
(

v‖in/v⊥in

)

, then following ξ becomes

ξout =
(

sin∆ϑ sinϕ
√

1− ξ2in + ξin cos∆ϑ
)

, with ∆ϑ = R
√
2ν∆t [28, 29]. In the

previous expression ∆t is the time-step, ν the collision frequency as defined above,

R a random number from a normal distribution function with expectation value zero

and variance one and ϕ a random number from a uniform distribution between 0 and

2π.

Taking f0 = fM exp(−ZeΦ1/T ), i.e. the solution of the zeroth order DKE,

∂f0
∂t

+ v‖ · ∇f0 −
(

µ∇‖B +
q

m
∇‖Φ1

) ∂f0
∂v‖

= C(f0), (15)

with fM =
[

n0/(2π)
3/2v3T

]

exp
[

−
(

v2‖ + v2⊥

)

/2v2T

]

the standard local Maxwellian,

equation 10 becomes,
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∂f1
∂t

+Ṙ·∇f1+v̇‖
∂f1
∂v‖

= −f0 (vd + vE1)·∇r

[

n′

n
+

q

T
Φ′

0 +

(

mv2

2T
− 3

2
+

q

T
Φ1

)

T ′

T

]

+C(f),

(16)

where the species index has been dropped for convenience, the prime denotes the deriva-

tive with respect to r, vE1 = b × ∇Φ1/B is the E × B drift related to the potential

variation, and the δf part has been relabelled as f1. As we have pointed out, in 16 we

are using equations (7)-(9) instead of 4-6. In particular, this implies the assumption

that radially non-local terms, as well as terms involving the tangential components of

the magnetic drift can be neglected when multiplying terms with f1. The conditions

that the magnetic configuration has to satisfy so that radially non-local terms can be

dropped are identified in [23]. Neglecting the tangential components of the magnetic

drift is correct as long as the E0 ×B drift is sufficiently large. Finally note that in the

present work f0 differs from that in [20] where it is just fM , i.e. Φ1 is kept as a first

order magnitude for all species, including the impurities, in that reference. This, which

allows f1 to develop the Boltzmann response, may be questionable when ZeΦ1/TZ be-

comes of order unity, and might lead f1 to become not sufficiently smaller than f0. In

this sense the present ordering constraints more efficiently the smallness of f1 and the

neglected terms mentioned in the previous paragraph regardless of the value of Φ1 and

the impurity charge state.

The solution of equation 16 when Φ1 is neglected leads to the same result as the standard

mono-energetic and local neoclassical theory. In figure 1 a radial profile of the particle

flux density for fully ionized carbon is presented, comparing results of EUTERPE and

the 1D transport code NTSS [30, 31] which uses transport coefficients determined by

DKES [32, 33]. Note that this benchmark case corresponds to the LHD magnetic con-

figuration considered in section 3.1 for the case labelled as B.III and neglecting Φ1 (see

figures 3).

2.2. Solution of the quasi-neutrality equation in EUTERPE

Regarding the electric field calculation the ambipolar part Φ0 is provided by the

predictive transport code mentioned at the end of the previous section NTSS. This code

uses precalculated DKES mono-energetic coefficient databases that are, given a set of

equilibrium profiles, appropriately convoluted to obtain the particle fluxes necessary for

the ambipolar root-finding [30]. For the calculation of Φ1 performed with EUTERPE,

instead of the less restrictive ambipolariy constraint the fulfilment of quasi-neutrality

among all the species is considered,

∑

a

Zaena = 0. (17)
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Figure 1: EUTERPE/NTSS comparison for the radial particle flux density of C6+ as a

function of the normalised effective radius r/a. The plasma parameters correspond to

the case B.III shown in figure 3 and Φ1 = 0 in this comparison.

Considering the density up to first order in ρ∗ with the equilibrium part now varying

on the flux surface due to the Boltzmann response

na = n0a exp(−ZaeΦ1/Ta) + n1a, (18)

and assuming that
∑

a Zaen0a = 0, when electrons, bulk ions, and one single impurity

species with charge Z are taken into account the following relation follows

Φ1 =
Te

e

(

n0e + n0i
Te

Ti

+ Z2n0Z
Te

TZ

)−1

(n1i − n1e + Zn1Z) , (19)

when the exponent of the Boltzmann factor is assumed much smaller than unity for all

species. For the calculations carried out in this work the electron response is assumed

to be adiabatic and f1e is neglected since f1e/f1i ∼ ρ∗e/ρ∗i at comparable electron and

bulk ion temperature. Since equation 19 is limited to the cases where ZeΦ1/TZ ≪ 1,

and this limit is questionable in situations with moderate to high Φ1 amplitude and Z,

impurities then assumed in this work at a sufficiently low concentration so that their

influence on the potential can be neglected. The leap in complexity if more terms in

the series must be retained or the Boltzmann response was kept in its exponential form,

leading to an equation non-linear in Φ1, is beyond the scope of the present work. Thus,

under these assumptions the equation for Φ1 reduces to
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Φ1 =
Te

e

(

n0e + n0i
Te

Ti

)−1

n1i, (20)

and states that the potential to redress the lack of charge quasi-neutrality at this order

is exclusively due to the first order departure of the bulk ion density from its equilibrium

value.

When solving equation 20 a Fourier solver implemented in EUTERPE applies a low-

mode-number filtering that defines the range of Fourier modes over which the equation

is to be solved. In the present work poloidal and toroidal mode numbers m and n

up to 4 have been sufficient to find good convergence of the calculated Φ1 and the

related impurity fluxes. EUTERPE calculates Φ1 at each flux surface independently,

which introduces a dependency on r since Φ1 differs from one surface to another. Thus

Φ1 over the simulation time is better expressed as Φ1(r, θ, φ, t). Here θ and φ are the

angular-like magnetic (PEST [34]) coordinates. The poloidal drift due to the radial

variation of Φ1 will be ignored here since it is of the same magnitude as the tangential

b × ∇B component of vd ignored when simplifying equation 4 to equation 7. The

time dependency is averaged out during the time interval where stationary values have

been reached within numerical error. For the remainder of this paper we will write

the dependence of Φ1 as it is assumed and introduced as input for the impurity flux

simulation: as a stationary potential Φ1(θ, φ) which impurities do not influence given

their low concentration. In figure 2 (left) an example of a Φ1 contour plot is presented.

The corresponding complex Fourier coefficients are shown separately for the real and

imaginary parts and appear normalised to the component with maximum amplitude,

which in this case is the cos θ term. Again note that the representation of Φ1 can

be expressed as: Φ1 =
∑

m,n [ℜ(Φ1,mn) cos(mθ + nφ) + ℑ(Φ1,mn) sin(mθ + nφ)]. Finally

the flux surface average 〈Φ1〉 = Φ1,00 must be zero since radial local trajectories are

integrated. Nevertheless this is not strictly the case and Φ1,00 usually develops some

small finite value during the simulation, which is due to the error accumulated in the

numerical integration of the trajectories and the presence of a small radial numerical

drift. A low amplitude of the component Φ1,00 indicates a weak numerical departure

from the exact trajectories and is correlated to tolerable noise situations, and filtering it

out does not impact appreciably the calculation of any other magnitude, including the

radial flux of impurities. In figure 2 (right) such a situation is found where Φ1,00 finite

but nevertheless small. These figures are obtained for the case B.III discussed later in

section 3.1. A benchmark of the calculations of Φ1 with the code SFINCS has recently

been carried out and the results are presented in the appendix.

3. Radial flux of impurities including Φ1

In this section the numerical results are presented and discussed. Three different

stellarator configurations, each from a different device type, have been considered:

the Large Helical Device (LHD, Toki, Japan) heliotron; the Wendelstein 7-X (W7-
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Figure 2: (Left) Stationary Φ1 obtained with EUTERPE as a function of the poloidal

and toroidal coordinates θ and φ. Absolute values of the real and imaginary parts

(center and right figures respectively) of the Fourier coefficients Φ1,mn normalized to the

modulus of the largest component, in this case cos θ.

Magnetic configurations

Device B00(r/a = 0.5) [T] R0 [m] a [a]

LHD 1.54 3.6577 0.5909

Wendelstein 7-X 2.78 5.5118 0.5129

TJ-II 0.996 1.5041 0.1926

Table 1: Major and minor radii, R0 and a respectively, and amplitude of the Boozer

harmonic B00 of the magnetic field at the mid plasma radius of the three studied

configurations.

X, Greifswald, Germany) helias; and the TJ-II (Madrid, Spain) heliac. For each

device a vacuum configuration has been considered and the radial particle flux of some

representative impurities calculated, comparing the result when Φ1 is neglected to the

result when Φ1 is retained. The scanned plasma parameters have resulted in 6 different

pairs of density and temperature profiles for LHD, 5 for W7-X and 2 for TJ-II. The

main parameters related to the three magnetic configurations taken into account are

provided in table 1.

3.1. LHD results

For LHD two different density profiles have been considered: one corresponding to a

high-density scenario and one corresponding to a low-density scenario. Following the

contour plot of the magnetic field modulus at r/a = 0.6 presented in 3 (left), the

second plot from the left shows the two density profiles, and are labelled respectively

as A for the high electron density n0e, and B for the low n0e. For each set of profiles

considered throughout this work a three species plasma has been assumed (hydrogen

as bulk ions, electrons and one impurity species with charge Z). For the LHD results

presented in this section fully ionised carbon C6+ and neon Ne10+ have been considered.
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Figure 3: From left to right: magnetic field strength of the LHD equilibrium used at the

radial position r/a = 0.6; electron high-density (A) and low-density (B) radial profiles;

electron, hydrogen and impurity temperature radial profiles considered; ambipolar

electric field Er profiles of the six resulting pairs of ion density/temperature profiles.

The equilibrium density of the bulk ions n0i and impurities n0Z is then initially

taken so that quasi-neutrality among all the species at zeroth order is fulfilled. Thus

n0Z(r) = n0e(r) [Zeff(r)− 1] / [Z(Z − 1)] and n0i(r) = n0e(r) [Z − Zeff(r)] / (Z − 1). The

reference value considered for the effective charge is taken in all cases to be Zeff = 1.1

and it is held constant over r, which results in the bulk and impurity ion density

profiles having the same shape as the electron density profile. The temperature profile

of the impurities and bulk ions, taken equal, has been scanned, keeping the electron

temperature profile fixed. These profiles sorted in increasing order of ion temperature

are labelled as I, II and III and are shown in figure 3 (third plot from the left). Finally

the ambipolar electric field Er provided by NTSS is presented in the rightmost plot.

Note that for all the LHD plasmas presented here Er is negative, and for the low-

collisionality cases B, Er is relatively close to zero. The corresponding impurity inward

pinch is then smaller than at higher collisionalities, which should make it easier for

higher-order corrections to counteract the inward impurity pinch [35] as is shown below.

In figure 4 the normalised electrostatic potential eΦ1(θ, φ)/Ti is presented for the three

aforementioned ion temperature profiles I, II and III at the radial position r/a = 0.6.

The three figures on the top correspond to the high-density cases A.I-III while the plots

on the bottom corresponds to the low density B.I-III cases. As the collisionality de-

creases and the temperature increases (i.e. following the six contour plots from left to

right and top to bottom) the normalised potential increases up to one order of magni-

tude from case A.I to B.III. Considering that Φ1 scales with the ion temperature (see

equation 20) and that the collisions prevent the localised particles from completing their

orbit and effectively contributing to Φ1, the trend that eΦ1/Ti follows is qualitatively

as expected.

Figure 5 shows the real and imaginary part of some Fourier coefficients of Φ1 with rep-

resentative poloidal and toroidal mode numbers. The typical values of the largest terms

vary from a few volts of peak-to-peak potential variation in case A.I to around a hundred

in case B.III. The change in the spectrum of the potential between the high density cases
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Figure 4: At the position r/a = 0.6 for LHD: on the top row Φ1(θ, φ) for the high-density

profile cases A and on the bottom row for the low-density cases B.

and the low density cases is appreciable too. At high density (top figures) the spectrum

consists basically of two large sin θ and cos θ components of comparable size followed

by other components appreciably lower in absolute value, among which the cos 2θ is

the largest. On the other hand, the spectrum of Φ1 for the low-density cases (bottom

figures) is characterised by a dominant cos θ component with no other component of

similar prominence. In order to sketch what underlies these changes in the spectrum

note first that Φ1, under the assumptions considered, reflects the same dependence as

that of n1i (see equation 20), given by the perturbed distribution function of the bulk

ions f1i. Regarding the dependence of the latter, and in particular the portion related

to the ripple-localised particles which are largely responsible for Φ1, it is known for a

classical stellarator [15, 36] that in the asymptotic limit where the effective collision

frequency exceeds the Er × B poloidal precession frequency (ΩE = Er/rB0 ≪ νi) the

distribution function consists essentially of a sin θ component, while in the opposite

rotational limit (ΩE ≫ νi) this becomes to a good approximation a cos θ term. In the

cases presented, the parameters are such that ΩE/νi take values from approximately 0.2

for the simulation with the highest ion collisionality (case A.I at r/a = 0.8) to 20 at the

lowest collisional one (case B.III at r/a = 0.8). Thus qualitatively the changes in the

Fourier spectrum of Φ1 can be reasonably well explained.

The question to what extent the radial impurity transport is affected by Φ1 has been

addressed considering the potential calculated at four different radial positions for each

set of profiles: r/a = {0.2, 0.4, 0.6, 0.8}. The calculated potential at a given flux surface
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Figure 5: Real and imaginary parts of the Fourier harmonics of Φ1 as a function of r/a

for the six LHD cases considered.

has been taken as an input for the estimation of the radial particle flux density 〈Γ · ∇r〉
of the impurity of interest. In figure 6 the results for LHD are shown. In all plots

filled/open points correspond to the result including/neglecting Φ1. For better visuali-

sation, points are connected by a solid/dashed curve respectively. The impurity species

is denoted by a different point type and line colour. Fully ionised carbon and neon,

C6+ and Ne10+, are represented with black circles and green diamonds respectively. The

radial particle flux density is represented normalised to the equilibrium density value

n0Z at each position. The electron density profile (A or B) and impurity temperature

case (I, II or III) are indicated in the legend.

In a first overview of figure 6 and looking at the corresponding contour plots with the

ratio eΦ1/Ti shown in figure 4, for the two impurity species, a more significant change

in the impurity fluxes is observed with increasing eΦ1/Ti.

Focusing on the high-density cases A, for the two impurity species the effect of the

potential variation is initially found to be weak, see case A.I, and becomes more appre-

ciable as the amplitude of eΦ1/Ti amplitude (and the ion temperature) increases, see

cases A.II and A.III. A large impact on the shape of the impurity flux profiles is not

observed but mitigation of the inward flow does occur in the three cases for both carbon

and neon.

We observe that for the low density cases B for the three species Φ1 has a much stronger
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Figure 6: Radial particle flux density 〈Γ · ∇r〉 normalised to the equilibrium density

n0Z for C6+ (circles), Ne10+ (diamonds) including Φ1 (filled points linked by solid lines)

and neglecting it (open points linked by dashed lines). For visualisation purposes points

are linked with cubic splines fitting curves.

impact on the radial flux than at high densities. Not only in absolute value but also

in overall trend along the radial coordinate. Apart from the larger eΦ1/Ti values the

background plasma should not be overlooked [35]. For the low collisionality cases B the

standard inward impurity pinch is smaller, and the correction caused by Φ1 makes a
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larger difference of the total impurity flux than in the cases without. Without Φ1 and

regardless of the temperature profile (I, II or III) the radial flux of carbon monotonically

becomes less negative with increasing r. The effect of Φ1 reverses that tendency, leading

to a stronger inward flow at the outer radii and a weaker one at the more inner posi-

tions. This loss of similarity between radial profiles with and without Φ1 is significantly

more evident as Φ1 increases. Regarding the impact of the charge state, neon exhibits

a slightly more pronounced change when Φ1 is considered than carbon does.

The underlying reasons that make the effect of Φ1 mitigating or supporting the tendency

to accumulate impurities, are difficult to deduce when comparing across cases and radial

positions. The results indicate the necessity of a deeper quantitative look into the the

problem, beyond the mere correlation between parameters discussed so far, namely,

potential amplitude, collisionality, charge state, etc.

To outline the intricate coupling that leads Φ1 to produce net particle transport note

first that contrary to the magnetic field modulus B, Φ1 does not preserve the stellarator

symmetry as it contains both cosine and sine components. This lack of stellarator

symmetry arises indeed from the stellarator symmetry of B, that introduces only sine

terms in the transport source vd · ∇r, which coupled to the cosine terms of f1 vanish

when the flux surface average operates on the particle-flux-density integral. Thus, the

physical situation with non-zero radial transport requires f1 to have sine components

that, as discussed above, are the same for n1i and Φ1. As a consequence, when Φ1 is taken

into account and together with it vE1 · ∇r as a transport source for the impurities, it is

straightforward to recognise that this can drive radial transport through both sine and

cosine terms of Φ1 coupled respectively to the cosine and sine components of f1. Then,

returning to the question of how a particular Φ1 affects on counteracting the inward

flux of impurities depends on the spatial dependence of f1Z , or equivalently, the answer

requires to know how the perturbed impurity density n1Z on the flux surface varies.

To illustrate this coupling figure 7 shows an example of how the perturbed density and

cross field drifts change from the situation without Φ1 to the one that includes it. The

figure refers to the carbon B.III case at the innermost radial position r/a = 0.2 (see

bottom right plot in figure 6), which shows a reduction of the inward flux when Φ1 is

present. The radial drifts for the two cases, magnetic vd · ∇r (top left) and the sum of

magnetic and electrostatic (vd + vE1) · ∇r (top right), are presented. For this example

the thermal energy equally divided among the parallel and perpendicular kinetic energy

has been considered for the drifts shown.

In the two bottom plots the density variation of carbon n1C6+ are represented for the

case without Φ1 (bottom left) and for the case with Φ1 (bottom right). The contours of

the radial drifts of the top figures are superimposed to the corresponding density contour

plot for visualisation purposes. In the first of the density contour plots one can observe

that the density exhibits an up-down pattern with low (high) density values around

θ = π/2 (θ = 3π/2). The low density areas of the flux surface appear predominantly

encompassed by contours of strong positive radial drifts while the high density regions
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Figure 7: For the B.III LHD case at the radial position r/a = 0.2 (see figure 6): radial

magnetic drift across the flux surface vd ·∇r (top left); sum of the magnetic and E1×B

drifts across the flux surface, (vd + vE1) · ∇r (top right); first order departure of the

carbon density n1C6+ when Φ1 is neglected together with the contours of vd ·∇r (bottom

left); n1C6+ when Φ1 is taken into account together with the contours of the vd · ∇r

(bottom right). In the bottom figures dashed/solid contours correspond to radially

inward/outward drifts.

coincide with those of negative drifts. This situation, that clearly supports the inward

flow of carbon ions, is lost when Φ1 is present. In that case (see bottom right plot) a

phase shift of π/3−π/2 along θ in the carbon density, which becomes in-out asymmetric

instead, leads the radial drift contour of largest outward and inward values to be both

situated in the low density region located in between θ = π/2 and 3π/2. This does not

support the enhancement of the inward pinch as was the case without Φ1.

3.2. Wendelstein 7-X results

In this section similar numerical simulations to those discussed in the previous one for

LHD are presented for the stellarator Wendelstein 7-X (W7-X). We consider a similar

scan of the ion temperature profiles, set equal to the temperature of the impurity, as

shown in figure 8. From left to right the four plots represent: the magnetic field mod-
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Figure 8: From left to right: magnetic field strength in one W7-X period at the position

r/a = 0.6; electron density radial profile; scanned temperature profile, taken to be equal

hor electrons, hydrogen ions and impurities; ambipolar electric field Er profiles for each

case.
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Figure 9: On the top row: Φ1 contour plots at the radial position r/a = 0.6 for the

W7-X cases I, II, III and IV (from left to right). On the bottom row: real and imaginary

part of some Fourier harmonics of Φ1 as a function of r/a each case.

ulus in one W7-X period at r/a = 0.6; the electron density n0e (as before, an effective

charge Zeff = 1.1 taken independent of r defines the bulk and impurity ion density radial

profiles); the four different Ti = TZ radial profiles which are labelled as I, II, III and IV

increasingly with T ; and the ambipolar radial electric field obtained with NTSS.

The top row of figure 9 shows contour plots of the normalised electrostatic potential

eΦ1/Ti varying over the surface at the radial position r/a = 0.6. The values of eΦ1/Ti

calculated for W7-X are appreciably lower than for the LHD cases at comparable

collisionality, which corresponds roughly to the high density cases A.I-III in figure 4

(top row) (a comparison of all simulation results is given in figure 17). The reason for
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the low value of the electrostatic potential in W7-X is the aim of the design of this

device namely, reducing the neoclassical losses and bootstrap current by approaching

an omnigeneous magnetic field structure. In a perfectly omnigeneous magnetic field the

bounce-averaged drift surfaces of the localised particles coincide with the flux surfaces.

Although this ideal situation cannot be exactly reached [37], the W7-X magnetic field

structure is a better approximation than the other devices considered in this work,

leading to a smaller departure of the localised particles from the flux surfaces and

resulting in a weaker electrostatic potential variation on them. Regarding the Fourier

spectrum of Φ1, similar features to LHD at comparable collisionality (cases A.I-III)

are seen. A dominant sin θ component and a weaker cos θ that grows as collisionality

decreases appear in both the W7-X and the LHD cases. On the other hand, the W7-X

potential exhibits a broader spectrum, in the sense that the rest of the components are

not as small – especially at the outer radii – as in LHD, where with the exception of

cos 2θ the remaining Fourier harmonics cluster around the value zero.

In figure 10 the particle flux density calculated for fully ionised carbon C6+ (circles) and

Tungsten W40+ (triangles) is presented for the four ion temperature profiles in the top

and bottom rows respectively. As before, filled (open) points linked with solid (dashed)

lines correspond to the calculation including (neglecting) the potential variation on the

surface. Looking at the carbon cases, the difference that Φ1 makes with respect to

the standard neoclassical prediction is difficult to discern for the lowest temperature

cases like I or II. As the ion temperature increases, in III and IV for instance, the

impact becomes distinguishable and results in a weak mitigation of the inward radial

flux. Nonetheless Φ1 makes little difference in the flux levels of these cases too. In the

comparison for tungsten impurities shown on the bottom row of figure 10 the trend

is the same, although the larger charge state makes the difference more clear between

taking into account the potential variation and neglecting it, particularly in the lowest

collisional cases III and IV.

As mentioned in the previous paragraph, none of the cases presented so far for W7-X

is comparable in parameters and collisionality to the LHD low density cases B, which

were the cases that showed the most significant quantitative and qualitative change so

far due to Φ1. Thus, in order to allow a comparison with those LHD cases an additional

set of profiles for W7-X is presented. It corresponds to a W7-X plasma with off-axis

ECRH where the density is lower than in the previous cases and the electron and ion

temperature are comparable to the previous case IV. The profiles are shown in the left

and central plots of figure 11 and the ambipolar radial electric field on the right. The

sample of Φ1 at the position r/a = 0.6 is presented in figure 12 (left) and the main

Fourier harmonics of Φ1 are plotted in figure 12 (right) as a function of r/a. In this

case the maximum potential amplitude is twice as high as in the previous case IV. The

spectrum exhibits a very distinctive dependency along r, where no clear dominance

of any component is present, except at the outer-most position where the components

sin(φ− θ) and the sinφ are larger than the remaining ones in absolute value.
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Figure 10: Radial flux density of C6+ (top) and W40+ (bottom) as a function of r/a

including Φ1 (solid line) and neglecting it (dotted line). The cases I to IV are displayed

from left to right.

Figure 11: For the W7-X case with off-axis ECRH, from left to right: electron density

radial profile; temperature radial profiles for hydrogen ions, electrons and impurities;

ambipolar electric field Er.
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Figure 12: Electrostatic potential variation at r/a = 0.6 and some representative Fourier

harmonics of Φ1 as a function of r/a for the W7-X case with off-axis ECRH.

Regarding the impurity radial fluxes, in the case of carbon (figure 13 left) the correction

introduced by Φ1 is practically negligible. It is necessary to increase substantially the



Φ1 and its impact on impurity transport 21

Figure 13: Radial particle flux density of C6+ (left) and W40+ (right) as a function of

r/a including Φ1 (filled dots linked with solid line) and neglecting it (open dots linked

with dashed line) for the W7-X case with off-axis ECRH..

charge state, (see figure 13 right for a similar comparison for W40+) to notice the

difference. Here the inward pinch without Φ1 is barely zero (r/a = 0.2 and 0.4), due to

the low negative Er values (see figure 11 right). And the introduction of Φ1 leads the

inward pinch to become appreciable. Anyhow, the difference between the case without

and with Φ1 is still not larger than in case IV discussed above, despite of the stronger

eΦ1/Ti in a factor 2. This lack of response to a larger eΦ1/Ti may indicate again that the

specific coupling between the potential variation and the distributing function density

f1Z is playing a role, as the discussion at the end of section 3.1 is noted. This represents

an entire topic to look deeper into in another work.

3.3. TJ-II results

Finally in the present section two cases are considered for the TJ-II stellarator. A

contour plot of the magnetic field modulus of the configuration considered at the radial

position r/a = 0.6 is shown in figure 14 (left). Two electron density profiles (high and

low density) shown in figure 14 (second plot from the left) have been taken into account,

with the temperature profiles for the electrons, bulk ions and impurities given in figure

14 (third plot from the left). The corresponding two ambipolar electric field profiles are

shown in figure 14 (right). The impurities considered are fully ionised carbon C6+ and

partly ionised tungsten W15+. These profiles correspond to typical NBI-heated TJ-II

plasmas [38, 39].

In figure 15 (top) the normalised electrostatic potential eΦ1/Ti is plotted at the radial

position r/a = 0.6 for the high- and low-density cases. The amplitude of some

representative Fourier harmonics (bottom) are also shown. Looking at the latter

figure the harmonics of Φ1 are lower in amplitude than LHD and of the same order

of magnitude as in the W7-X cases, of a few volts. Nevertheless, the much lower

ion temperature of these TJ-II examples indeed represents the largest ratio eΦ1/Ti at

comparable collisionality of the three devices studied – see figure 4 (top) and 9 (top)

for the same magnitude represented for LHD and W7-X similar collisionality cases –.

Further discussion comparing all the cases studied in this work is provided in section 4,
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Figure 14: From left to right: magnetic field strength in one TJ-II period at the position

r/a = 0.6; electron high and low density radial profiles of a typical NBI-heated plasma;

electron, hydrogen and impurity radial temperature profiles; ambipolar electric field Er

profile for the two cases considered.

but we note already in this section that the electrostatic potential energy related to Φ1

can vary up to 5-8 % in terms of thermal energy for the high density TJ-II case and up

to 10-15 % for the low density one. For LHD and W7-X the variation is respectively

one and two orders of magnitude lower than that. In contrast to W7-X, where the

neoclassical optimisation undergone for its design underlies the weak Φ1, the lack of

such optimisation in TJ-II and much larger effective ripple (see Ref. [9]) supports large

potential variations like those calculated here and observed experimentally [40].

The results for the radial impurity flux are represented in figure 16 for the high/low

density cases in the two figures on the left/right, and for the two species considered,

C6+ on top and W15+ on the bottom. The radial impurity transport is not affected by

the presence of Φ1 to the extent its large amplitude for such low temperatures might lead

one to expect. It does not differ qualitatively from the standard neoclassical prediction,

although quantitatively the changes observed in the flux are appreciable and tend to

decrease the inward flux. The difference on the impact for carbon and tungsten are

also of comparable order of magnitude regardless of the different charge states. This

weak response to relatively large values of Φ1 and charge state again points out to the

fact that the impact of Φ1 on the radial transport cannot be explained only with the

magnitude of the parameters under discussion. As noted at the end of section 3.2 and

more in detail in section 3.1, the spatial dependence of f1Z depends on these parameters

too and changes from case to case, and with it, the coupling with Φ1 to finally impact

the radial transport more or less efficiently. Finally, regarding the spectrum of Φ1 shown

in figure 15 (bottom), TJ-II exhibits several large terms, among which the cos θ is the

largest along r for both density cases. Not much smaller are also found others like the

sin θ, the helical components cos(θ + φ) or sin(θ + φ).

4. Final remark on the amplitude of Φ1 in LHD, W7-X and TJ-II

The smallness of ZeΦ1/T , as was noted in the introduction, indicates the reliability

of the standard neoclassical neglect of Φ1 as source of trapping and radial transport
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Figure 15: At the position r/a = 0.6 for TJ-II standard configuration: Φ1 contour plots

for the high and low density TJ-II cases (top) together with the corresponding radial

profiles of some selected Fourier components (bottom).

of impurities compared to the magnetic field gradient and curvature. Taking ∆Φ1 to

be the maximum potential variation on a flux surface, e∆Φ1 is subsequently the total

energy variation that a bulk ion, or impurity if multiplied by Z, can experience on a

flux surface due to Φ1. In order to compare all the cases and configurations considered

here, figure 17 shows the ratio e∆Φ1/T as a function of the bulk ion normalised to the

bounce frequency, ν∗ = νi,TR/vT iι where ι is the rotational transform. The figure takes

into account the four radial locations considered for each set of profiles and devices

considered in the present paper.

Observing this representation it is clear that assuming mono-energetic trajectories

for impurities easily becomes questionable and the effect of Φ1 (as confirmed in the

simulations presented) can be important in LHD and TJ-II. In these two devices the

electrostatic energy variation normalised by the thermal energy exceeds at most radial

positions and in most cases the level of a few percent (and in some cases ten percent).

This ratio appropriately scaled by a moderate to large impurity charge (and at some

positions also by a low charge) becomes of order unity. This is clearly the case for the

low-density set of LHD profiles B.I-III and the two TJ-II cases. TJ-II exhibits potential

variations of the order of those given in LHD at the much lower collisional set of profiles

B. At a comparable range in collisionality, LHD cases A.I-III develop a Φ1 roughly an

order of magnitude lower than TJ-II. Similarly, comparing W7-X and LHD, the former
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Figure 16: Radial particle flux density of C6+ (top) and W15+ (bottom) as a function

of r/a including Φ1 (filled dots liked by solid lines) and neglecting it (open dots linked

by dashed lines), for the high and low density TJ-II cases (left and right respectively).

device has values of e∆Φ1/T one order of magnitude lower than comparable cases for

the latter.

For the W7-X cases studied, the ratio on the other hand takes maximum values of around

and slightly below one percent, which may result in a moderate impact on highly charged

impurities like the tungsten, but has a negligible effect on the radial transport of low

charge impurities like carbon.

Finally, the quantitative impact of Φ1 and the conclusions drawn from the cases

considered in this work should be taken cautiously when extrapolating them to

parameters distant from the present ones, as they follow from a limited set of profiles.

In addition, the changes in the impurity distribution function f1Z , and hence in the

density of impurities n1Z , are noted to play a role from the fact that in a few examples

the impact is weaker than what could be expected from the considered parameters.

5. Summary and conclusions

The radial transport of impurities is known to be strongly influenced by the ambipolar

part of the electrostatic potential, usually considered as an approximation to the full

neoclassical electrostatic potential. In the present work, we have also taken into account

the potential variation on the flux surface Φ1 after solving the quasi-neutrality equation.

The impact of Φ1 on the radial particle flux of a few impurity species in the devices
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Figure 17: Normalized maximum variation of the potential e∆Φ1/Ti for all the cases

presented in this work, as a function of the normalised thermal collision frequency ν∗.

LHD, W7-X and TJ-II, using the code EUTERPE has been presented considering some

typical plasma profiles.

The calculations have to a varied extent confirmed the importance of taking Φ1 into

account to quantitatively assess the radial transport of impurities. In LHD the effect of

Φ1 was visible in all cases, and in the low collisional ones strong corrections in the radial

flux profiles have been shown, including both the mitigation and enhancement of the

inward flux. In typical TJ-II NBI-heated plasmas including the role of Φ1 has resulted

in appreciable changes as well, although weaker than what could be expected from the

large potential variation predicted for this device.

Finally, in W7-X eΦ1/T has been found roughly to be one order of magnitude lower

than in LHD and nearly two orders below TJ-II. Low charge impurities like C6+ are

thus unaffected by Φ1 but highly charged impurities like W40+ could experience some

moderate change in their fluxes.

Apart from a more exhaustive parameter and magnetic configuration scan, some issues

remain open, namely: study of the specific coupling between n1z and Φ1 which may

result in scenarios of efficient mitigation of the tendency to impurity accumulation;

the relaxation of the tracer impurity limit since accumulation unavoidably leads

to appreciable impurity concentrations; relaxation of the assumption of an electron

adiabatic response whenever meaningful.
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Appendix A: Benchmark between EUTERPE and SFINCS

SFINCS [41, 22, 42, 43, 44] is a 4D drift-kinetic equation solver for computing radi-

ally local neoclassical phenomena in non-axisymmetric plasmas. The code can be run

with an arbitrary number of kinetic plasma species, and it implements the full linearized

Fokker-Planck-Landau operator for self- and inter-species collisions. Numerically, it uses

continuum methods, with finite differences in the two spatial coordinates (poloidal and

toroidal angles θ and φ), and spectral methods in the two velocity coordinates (normal-

ized speed x = v/vth and pitch-angle ξ = v‖/v). SFINCS has recently been updated

to account for the flux-surface variation of the electrostatic potential, solving a system

that is nonlinear in the unknowns, f1 and Φ1. The system that is solved includes the

drift-kinetic equation, the quasi-neutrality equation, and a set of additional constraints

for the unknowns. These constraints have been added, in conjunction with introducing

particle and heat sources in the drift-kinetic equation, to enable a steady-state solution

to exist (see refs. [41, 22] and for additional details).

In the present work we use the same quasi-neutrality equation in SFINCS as in EU-

TERPE, i.e. the electrons are assumed adiabatic and impurities are neglected, and

we do our calculations with the pitch-angle scattering operator. However, it should

be noted that there are three differences compared to the EUTERPE implementation:

Firstly, even though the impurities are neglected in the quasi-neutrality condition the

whole system is still solved simultaneously which implies that it is still nonlinear (i.e. Φ1

is not given as a direct input to the kinetic equation of the impurities). Secondly, in the

kinetic equations of both the main ions and the impurities SFINCS neglects collisions

with the adiabatic electrons. And third in SFINCS there is no Fourier-filtering of Φ1,

that is, Φ1 is stored with the same θ and φ resolution as f1. The numerical resolution

which is required for convergence in SFINCS depends strongly on the magnetic geome-

try and the collisionality. In the long mean-free-path regime the number of grid points

required in θ, φ and ξ can increase dramatically as the collisionality decreases. Since the

time and memory requirements increase significantly when more grid points are used, it

is often desirable to use an individual resolution at each radius which is analyzed. The

minimum resolution used in any of the SFINCS runs is Nθ = 43, Nφ = 59 grid points

in the poloidal and toroidal direction (per identical segment of the stellarator), Nξ = 96

Legendre polynomials to represent the distribution function and Nx = 10 grid points in
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Figure 18: For the LHD A.III profile set, comparison between the potential variation Φ1

obtained with EUTERPE (top row) and SFINCS (bottom row). The radial positions

considered are, from left to right, r/a = {0.2, 0.4, 0.6, 0.8}.

energy.

The comparison between the calculation by SFINCS and EUTERPE of the electrostatic

potential Φ1 is presented in figure 18. The case considered in this benchmark is

the one labelled as A.III in section 3.1 for LHD, and taking the radial positions

r/a = {0.2, 0.4, 0.6, 0.8} (displayed from left to right). Slight differences are observed

between the contour plots, which which can be attributed to the differences noted above.

On the other hand the absolute value of the potential is in good agreement. In any case

the disagreement is not such that the values of the radial particle flux of carbon C6+

obtained by both codes deviate from each other. This is what figure 19 shows, where

the circles with error bars show the calculation with EUTERPE and the stars show

the results with SFINCS. As in previous figures filled points and solid lines refer to the

case including Φ1 while open points and dashed lines indicate the standard calculation

without it.
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Figure 19: Comparison between EUTERPE (circles) and SFINCS (stars) of the

normalized radial particle fluxes of carbon for the case A.III, with (filled points) and

without (open points) Φ1.
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