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Abstract

Nonlinear dynamics of single toroidal number gap Alfvén modes destabilised by the the resonant

interaction with fast ions is investigated, in Tokamak equilibria, by means of Hamiltonian mapping

techniques. The results obtained by two different simulation codes, XHMGC and HAGIS, are con-

sidered with reference to n = 2 Beta induced Alfvén Eigenmodes and, respectively n = 6 Toroidal

Alfvén Eigenmodes; simulations of the bump-on-tail instability performed by a 1-dimensional code,

PIC1DP, are also analysed. A general feature emerges from these results: modes saturate as the

resonant-particle distribution function is flattened, because of the fluxes associated to the motion

of particles captured in the potential well of the wave, over the whole region where mode-particle

power transfer can take place in the linear phase. Such region can be limited by the narrowest

of the resonance width and the mode width. In the former case, mode amplitude at saturation

exhibits a quadratic scaling with the linear growth rate; in the latter case, a linear growth rate.

These findings are explained in terms of the approximate analytic solution of a nonlinear pendulum

model. They are also used to prove that the radial width of the single poloidal harmonic sets an

upper limit to the radial displacement of passing fast ions produced by a single-toroidal-number gap

mode in the large n limit, irrespectively of the possible existence of a large global mode structure

formed by many harmonics.
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I. INTRODUCTION

In Tokamak plasmas, Alfvén modes can be driven unstable by the resonant interaction

with fast particles, like alpha particles produced by fusion reactions and/or fast ions pro-

duced by auxiliary heating methods, as such particles are characterised by speeds of the order

of the Alfvén velocity. The nonlinear interaction with Alfvén modes can in turn degradate

the confinement of these ions, preventing their thermalisation in the core plasma and pos-

sibly damaging the first wall. The relevance of this phenomenon depends on the details of

the nonlinear dynamics of the modes: how large is the fraction of fast ions involved, the

amplitude at which modes saturate, the fast-ion radial displacement under the action of the

modes. The capability of predicting the linear stability of proposed scenarios with respect

to Alfvén modes and the nonlinear effects on fast-ion dynamics in the presence of growing

modes is then an important element in the route towards the realisation of a nuclear fusion

reactor (or, more immediately, a burning plasma experiment).

A large effort has been devoted to the linear stability analysis of tokamak plasmas in

the presence of fast-ion minorities[1–6]. It has been shown that Alfvén modes can exist in

the gaps formed, in the Alfvén continuum, by toroidicity, ellipticity and other equilibrium

effects, as well as finite bulk-plasma β effects (with β being the ratio between kinetic and

magnetic pressure). These modes, called Toroidal Alfvén Eigenmodes (TAEs), Ellipticity-

induced Alfvén Eigenmodes (EAEs), Beta-induced Alfvén Eigenmodes (BAEs), etc., are

quasi-marginally stable magnetohydrodynamic (MHD) modes, easily driven unstable in the

presence of fast ions. Besides gap modes, continuum oscillation, strongly damped in the

MHD limit (no fast-ion contribution), can be destabilised by the resonant interaction with

fast ions, provided that the pressure gradient of such ions exceeds a certain threshold. These

latter modes have been dubbed Energetic Particle Modes[7] (EPMs).

The nonlinear dynamics of Alfvén modes has been deeply analysed in certain limits. In

particular, the very weak-mode limit has been thoroughly studied by Berk and Breizman[8–

10]. In this limit the problem can be reduced to a one-dimensional (1D) problem, and

the Alfvén mode dynamics can be treated as that of the bumb-on-tail instability[11–14].

Mode saturate via the flattening of fast-ion distribution function (that is, the reduction of

the free-energy source for instability). Saturation is reached as the flattening extends over

the whole phase-space region where the resonance condition is satisified (that is, where the

2



particle resonance frequency differs from the mode frequency by an amount not much larger

than the mode growth rate). This condition yields a quadratic dependence of the saturation

mode amplitude on the linear growth rate. In this near-marginal stability regime, the radial

excursion of fast ions due to the mode-particle interaction is so limited that it does not

allow resonant particles to perceive any of the (equilibrium or fluctuation induced) non-

uniformities characterising the system.

The other limit examined in literature is that of strongly unstable EPMs. Both numerical

and analytic works [15, 16] have shown that these modes saturate because a macroscopic

distortion of the whole fast-ion pressure profile, accompanied by a significant variation of

mode frequency and spatial structure. It has been shown [16] that this mechanism can give

rise to avalanches, with an outwardly moving front of pressure gradient: shear-Alfvén contin-

uum oscillations are driven progressively unstable by the radially drifting free energy source.

In this non-perturbative, strongly-driven regime, the radial excursion of resonant particles

is so essential that it self-consistently determines the nonlinear mode structure evolution.

This phenomenon has been described in terms of the so-called “fishbone paradigm”[17, 18],

reminding the dynamics associated to bursting ejection of fast ions, observed in the Poloidal

Divertor eXperiment (PDX) tokamak[19, 20].

Intermediate regimes have been examined by numerical simulation studies[21–24]. Several

points have been evidenced. On one side, it has been shown that modes characterised

by different toroidal numbers can cooperate in affecting fast ion transport[22]. Second,

the nonlinear modification of mode frequency (so-called frequency chirping) and structure

has been observed even for very weak (slightly above threshold) EPMs[23]. Finally, the

relevance of finite mode structure in determining the saturation process of gap modes has

been pointed out[21], and the transition from the quadratic scaling to a weaker one, for

the saturation mode amplitude, as the growth rate increases above a certain level has been

demonstrated[24].

In the present paper, we will consider only the latter phenomenon. It is characterised,

even during the nonlinear evolution of the mode, by constant frequency. To simplify the

analysis, we will analyse the evolution of a mode characterised by a single toroidal number n.

Under these conditions (constant frequency and single toroidal number), resonant particle

behaviour can be analysed by Hamiltonian mapping techniques[21, 25].

Aim of our paper is investigating whether the saturation dynamics presents quite general
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features. To overcome the unsatisfactory character of a numerical analysis (apparently

limited to a certain numerical tool and to the specific problem analysed), we compare the

results obtained by different codes, each applied to a different problem. In particular, we

present the results obtained by two 3D codes: XHMGC[15, 26, 27] and HAGIS[28]; and a

simple δf Vlasov-Poisson 1D code, PIC1D-PETSc[29, 30] (indicated, in the following, as

PIC1DP).

We show that the quadratic growth-rate scaling for the saturation amplitude is obtained

by all the codes in the limit in which mode-particle resonant interactions are not able to feel

the finite structure of the mode along the relevant coordinate (that is, the coordinate along

which the distribution function gradient plays the role of free-energy source for instability)

during the whole nonlinear evolution of the mode. As soon such finite structure is appreci-

ated by resonant particles (this is possible only for the 3D codes, for not too weak modes),

a transition a linear scaling is observed. In this latter regime, the flattening of fast-ion

distribution function is limited, at saturation, by the width of the mode, rather than the

width of the resonance region.

These results are interpreted on the basis of a simple nonlinear-pendulum model. It is

shown that it yields analogous results as the three, more complex, simulation codes consid-

ered. An approximate analytic solution is obtained for the model and it is used to predict

the behaviour of the simulation codes. The agreement of such predictions with the detailed

behaviour of these codes is satisfactory, and it allows us for interpreting the scaling observed

for the saturation mode amplitude.

Finally, the relationship linking the width of the distribution-function flattening to reso-

nance and mode width is used to predict the influence of single (and large) toroidal number

gap modes (in particular, TAEs) on the radial redistribution of resonant fast ions (in par-

ticular, passing ions).

The paper is structured as follows. Section II describes the numerical codes considered

in the present paper and presents the Hamiltonian mapping analysis interfaced with such

codes. The different cases investigated by each code and the relative results are exposed in

Sect. III. The nonlinear pendulum model, developed to interpret these results, is treated in

Sect. IV. Predictions based on the approximate analytical solution of the model are compared

with the effective results obtained by the different codes in Sect. V. Section VI estimates

from these results the upper limit to the radial displacement expected, for passing fast ions,

4



in presence of large-n BAEs, TAEs or EAEs. Summary and conclusions are presented in

Sect. VII.

II. NUMERICAL SIMULATION TOOLS

In this Section, the different numerical particle-in-cell (PIC) codes considered in this

paper are described, along with a diagnostic tool, based on Hamiltonian mapping analysis,

suited for the particular limit examined in the paper (namely, the evolution of a single

toroidal number mode characterised by essentially constant frequency).

A. XHMGC

The code XHMGC, developed at the Frascati laboratories, is the extended version [27]

of the HMGC [15, 26], a nonlinear code based on the hybrid MHD gyrokinetic model [31].

The code has been used to investigate fast-ion driven modes (such as TAEs, BAEs and

EPMs [15, 24, 32, 33]), as well as to analyse modes observed in existing devices (JT-60U [34],

DIII-D [35]) or expected in forthcoming burning plasmas (ITER [36, 37]) and proposed ex-

periments (FAST [38–40]). The fluid response of the thermal background plasma is described

by a set ofO(ǫ3)-reduced MHD equations [41] (with ǫ being the inverse aspect ratio) for a low-

β plasma, and the fast-ion and thermal-ion kinetic dynamics enter via the respective pressure

tensors, which are computed by solving the Vlasov equation for each species in the drift-

kinetic limit by PIC techniques. Finite-Larmor-radius effects are ignored, while finite-orbit

widths are taken into account in order to retain resonant wave-particle dynamics associated

with the drifts induced by curvature and non-homogeneity of the equilibrium magnetic field

in toroidal geometry [42, 43]. Assuming cold electrons, ideal-MHD Ohm’s law (E‖ = 0)

could be considered; XHMGC requires, however, a small resistivity, for numerical-stability

reasons. Kinetic contributions are treated in a non perturbative way: pressure-tensor terms

contribute to determine both structure and evolution of electromagnetic fields.
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B. HAGIS

The code HAGIS [28] has been developed in the framework of a joint project carried on by

Culham and Max Planck Institute for Plasma Physics groups. It evolves the phase-space co-

ordinates of a fast-ion population in the drift kinetic limit, in the presence of electromagnetic

modes. For each toroidal number, mode structure and linear frequency are pre-calculated,

in realistic magnetic equilibria, by the linear gyrokinetic, electromagnetic code LIGKA [44],

which takes into account both bulk-plasma and fast-ion kinetic effects. Such elements are

kept fixed, along with a prescribed amount of damping, during HAGIS simulations. Modes’

growth rates are instead computed, at each time step, in terms of the instantaneous power

exchange between modes and fast ions; frequency perturbations can also be computed on

the same basis. Fast ion nonlinearities are fully retained, while fluid mode-mode couplings

are neglected. Among other applications, HAGIS has been used to study MAST observa-

tions [45], understand energetic particle losses observed in ASDEX Upgrade [46] and predict

fast-ion behaviour in ITER [5, 22].

C. PIC1DP

PIC1DP [29, 30] is a δf PIC code simulating 1D electrostatic plasma by solving the

Vlasov-Poisson equation system. It upgrades an original 1D code, PIC1D [47] by recasting

the PIC approach in a vector-matrix form and adopting PETSc[48], a suite of data structures

and routines, for the parallel implementation of the code.

The 1D Vlasov-Poisson system can be written as

∂fj
∂t

+ v
∂fj
∂x

− qj
mj

∂ϕ

∂x

∂fj
∂v

= 0 (1)

∂2ϕ

∂x2
(x, t) = −4π

∑

j=e,i

qjnj(x, t) (2)

nj(x, t) ≡
∫ ∞

−∞

fj(x, v, t)dv (3)

(4)

where fj, qj, mj and nj are, respectively, distribution function, charge, mass and density of

the j species (electrons or ions), and ϕ is the electrostatic potential. In our simulations, we

will treat ions as a static background, solving the Vlasov equation only for electrons.
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D. Hamiltonian mapping analysis

Limiting our analysis to single toroidal mode number (n), constant frequency (ω) modes

allows us to take advantage from the existence of two constants of the perturbed particle

motion of the fast (“Hot”) ions. Indeed, besides the magnetic momentumM ≡ mHv
2
⊥/2ΩH ,

the quantity C ≡ ωPφ − nE, with Pφ being the toroidal angular momentum and E ≡
mHU

2/2+MΩH the fast-ion kinetic energy, is conserved, as it can be easily recovered from

the equations of motion in the Hamiltonian form [25],

dPφ/dt = −∂H/∂φ (5)

and

dE/dt = ∂H/∂t, (6)

where H is the single particle Hamiltonian, characterised by time and toroidal angle (φ)

dependence in the form H = H(ωt− nφ). In the previous expressions, v⊥ is the magnitude

of particle velocity perpendicular to the equilibrium magnetic field, ΩH = eHB/mHc is

the cyclotron frequency, mH and eH are fast-ion mass and charge, respectively, B is the

magnitude of local equilibrium magnetic field, U is the parallel (to the equilibrium magnetic

field) velocity and c is the speed of light. At the leading order, we can approximate

Pφ ≃ mHRU + eHR0(ψeq − ψeq0)/c ≡ Pφ(r, θ, U) (7)

and

C ≃ ωPφ − n(mHU
2/2 +MΩH) ≡ C(r, θ,M,U), (8)

with R being the major-radius coordinate and ψeq the equilibrium poloidal flux defined by

the following expression for the equilibrium magnetic field Beq ≡ R0Bφ0∇φ + R0∇ψeq ×
∇φ, and the label “0” indicating on-axis quantities. Then, cutting the phase space into

slices orthogonal to the axes M and C, particles belonging to a certain slice will never

leave it; stating this in a different way: gradients of the distribution function in M or C

directions neither represent free energy sources for driving the mode unstable, nor evolve

in time. Mode-particle power exchange can then be described as the sum of different-slice

contributions, each of them evolving in an independent way. Focusing on the most relevant

slice (that hosting the maximum power exchange), centred around (M = M0, C = C0),

we can get a deeper insight in the mode-particle interaction. To this aim, the phase-space
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slice is sampled by a set of test particles, evolving in the perturbed fields computed by the

self-consistent simulation. Each test particle can be represented by a marker in the (Θ, Pφ)

plane (with Θ being the wave phase seen by the particle). Test-particle coordinates are

collected every time (t = tj) the particle crosses the equatorial plane (θ = 0) at its outmost

R position. The wave phase at those times is

Θj = ωtj − nφj + 2πjmσ, (9)

where m is the poloidal mode number and σ ≡ sign(U). The resonance condition is

∆Θj ≡ Θj+1 −Θj = 2πk, (10)

with the integer k denoting the “bounce harmonic”. Differentiating Eq. 10 with respect to

time, the resonance condition can be written in the form

ω − ωres(r,M0, C0, k) = 0, (11)

with, ωres depending on the relevant resonance condition for the considered phase-space

slice. In this paper, we will consider only modes destabilised by the resonant interaction

with circulating particles. In such cases,

ωres(r,M0, C0, k) ≡ nωD + [(nq̄ −m)σ + k]ωb. (12)

Here [18, 49, 50],

ωD ≡
[

∆φ

2π
− σq̄

]

ωb (13)

is the precession frequency, ∆φ is the change in toroidal angle over the bounce time τb (i.e.,

the time needed to complete a closed orbit in the poloidal plane), defined as

τb ≡
∮

dθ

θ̇
, (14)

q̄ ≡ σ

2π

∮

qdθ , (15)

with q being the safety factor and the integral taken along the particle orbit; and

ωb ≡
2π

τb
(16)

is the bounce frequency (in our case, transit frequency). Equation 11 can be solved with

respect to r, yielding r = rres(ω,M0, C0, k), or Pφ, yielding Pφ = Pφ res(ω,M0, C0, k).
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In the unperturbed motion, dPφ/dt = 0. Then, during the linear phase of the mode

evolution, the particle trajectories in the (Θ, Pφ) plane essentially reduce to fixed points

for Pφ = Pφ res, while they correspond to drift along the Θ axis in the positive (negative)

direction, for Pφ 6= Pφ res, according to the sign that ω − ωres assumes on each side of Pφ res.

As the amplitude of the perturbed fields grows, Pφ varies because of the mode-particle

interaction (e.g., radial E × B drift, with E being the electric field). Even particles that

were initially resonant are brought out of resonance, getting non zero dΘ/dt and drifting in

phase until the field direction and, consequently, the Pφ drift are inverted. Particles that

cross the Pφ = Pφ res line invert the sign of dΘ/dt as well. Thus, their orbits are bounded,

and they would properly close them if the field amplitude were constant in time.

The situation we have just described holds for particles born near the resonance. Particles

born with Pφ far from the resonance maintain, instead, drifting orbits, although perturbed

by the interaction with the mode, as they do not cross Pφ = Pφ res. In the following, we will

refer to particles that cross Pφ = Pφ res (and, then, change the sign of dΘ/dt) as particles

“captured” by the wave, while defining “trapped” those particles that have completed a

full bounce in the wave potential well. As the fluctuating field strength increases, the Pφ

drift increases and more and more particles are captured and eventually trapped. The

formation of these closed-orbit structures, separated from the transit-orbit regions can be

seen in Fig. 1. Different frames refer to different times, during the mode evolution for a

XHMGC simulation. It is apparent that, in the presence of an equilibrium fast-ion density

gradient, the formation of closed orbits correspond to mixing particles originating from the

higher-density side of the resonance with particles originating from the lower-density one.

It then yields a net outward particle flux and a consequent density flattening around the

resonance. Such a flattening involves an increasingly wider region as the mode amplitude

increases. At the same time, it causes an increasing reduction of the free energy source for

the system instability [21]. In Sect. III we will investigate how this process is related to the

mode saturation. Moreover, we will discuss the slight differences required to implement the

same method for a 1D system, like that analysed by PIC1DP simulations.
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FIG. 1: From left to right: test-particle markers in the (Θ, Pφ) plane at

three successive times (corresponding to increasing mode amplitude)

during the mode evolution in a XHMGC simulation. Each marker is

coloured according to the birth Pφ value of the particle (red for

Pφ ≤ Pφ res, blue otherwise). The formation of closed-orbit structures,

separated from transit orbits, can be seen in the centre and right frames,

corresponding to the nonlinear phase.

III. DIFFERENT CODE RESULTS

In this Section, results of numerical simulations performed by XHMGC, HAGIS and

PIC1DP for different cases are presented.

A. XHMGC results

We apply XHMGC to the analysis of a Tokamak equilibrium characterised by shifted

circular magnetic surfaces, with aspect ratio R0/a = 10 (a being the minor radius of the

torus) and safety factor q ≃ q0 + (qa − q0)(r/a)
2, with q0 = 1.9, qa = 2.3 as shown in

Fig. 2 (left). Thermal ions are characterised by isotropic Maxwellian initial distribution

function with flat density and temperature profiles. The initial distribution function of fast

ions (same species as the thermal ones) is instead an anisotropic Maxwellian in the form:

FH ∝ nH(s)

T
3/2
H

Ξ(α;α0,∆)e−E/TH . (17)
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Here, nH(s), with s ≡ (1 − ψeq/ψeq0)
1/2, is the density profile, shown in Fig. 2 (right),

α ≡ cos−1(U/
√

2E/mH) is the pitch angle. The quantity

Ξ(α;α0,∆) ≡ 4

∆
√
π

exp
[

− (cosα− cosα0)
2 /∆2

]

erf [(1− cosα0)/∆] + erf [(1 + cosα0)/∆]
(18)

models the anisotropy of the distribution function. Note that, in the isotropic limit (Ξ = 1),

TH would assume the meaning of (uniform) temperature. In the present case, we assume an

anisotropic initial distribution function characterised by parallel temperature much higher

than the perpendicular one, by fixing the width and the peak of the pitch-angle distribution,

respectively, as ∆ = 0.1 and α0 = cos−1(−1/2). We are then essentially dealing with

counter-passing fast ions (cf. Fig. 3). Other parameters are vH/vA0 = 0.3, vi/vA0 = 0.06,

ρH0/a = 0.01 and ρi0/a = 0.002, with ρH ≡ vH/ΩH , ρi ≡ vi/Ωi, vH = (TH/mH)
1/2, vi and Ωi

being, respectively, the bulk-ion thermal velocity and cyclotron frequency, and vA the Alfvén

velocity. Note that the initial distribution function is not a proper equilibrium function,

as it is not merely a function of constants of the unperturbed motion. For simplicity, we

neglect the consequent initial relaxation of FH towards a genuine equilibrium, by suppressing

the corresponding terms in the evolution of the perturbed distribution function δFH ; this

does not affect our results in a significant way, as the typical particle orbit width (which

causes ψ not being a constant of the unperturbed motion) is few percent of the minor

radius. In the following, for linear simulations, we shall consider a fraction of fast ions,

nH0/ni0, ranging in the interval [0.0014, 0.002]. Thermal-ion diamagnetic effects are ignored

by assuming uniform thermal-ion density and temperature; we instead keep kinetic thermal-

ion compressibility effects, in order to include the formation of a kinetic thermal-ion gap. In

all the simulations, poloidal harmonics with m from 1 to 6 will be retained. A single toroidal

mode number, n = 2, is instead retained: this corresponds to neglecting fluid mode-mode

coupling in the evolution of electromagnetic fields, while fully taking into account wave-

particle nonlinearities.

Figure 4 shows the energy spectrum for the scalar potential, in the (r, ω) plane, for the

BAE driven by fast ions with nH0/ni0 = 0.0014, simulated by XHMGC. The plot refers to

the linear-growth phase, but no significant modification is found during the nonlinear phase.

It can be seen that the mode is located in the gap opened, in the shear Alfvén continuum,

by thermal-ion kinetic effects. For the same case, Fig. 5 reports the radial structure of

the different poloidal harmonics, while Fig. 6 shows the power transfer integrated over a
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FIG. 2: Radial profiles of safety factor (left) and the m = 0 component

of the initial fast-ion density normalised to the on-axis value (right), for

XHMGC simulations.

toroidal shell around the mode peak, as a function of the velocity-space coordinates (M,U).

From such plots we can identify a reduced phase-space point (r0,M0, U0) around which the

mode-particle resonant interaction is peaked. From Eq. 8, we can then compute the relative

C value as C0 = C(r0, 0,M0, U0) and select a set of test particles sampling the phase-space

slide (M0, C0). We fix r0/a = 0.5, M0ΩH0/TH = 1.25 and U0/vH = −0.93, corresponding to

C0/TH = −3.89. With this choice, the relevant bounce harmonic is k = 1. Figure 7 compares

the mode radial structure, represented by the radial profile of the squared modulus of the

perturbed scalar potential integrated over poloidal and toroidal angles, with the resonance

structure, represented by the radial profile of the quantity γ/[(ω − ωres(r,M0, C0, k))
2 +

γ2]−1/2, and the linear-phase power transfer radial structure for such set of resonant test

particles. Two cases are considered: the low-drive case nH0/ni0 = 0.0014 and a larger-drive

one, nH0/ni0 = 0.007. It is immediate to observe two facts: the resonance width increases

with the linear growth rate γ; the linear-phase power transfer is radially limited by the

narrowest of the resonance structure and the mode one (in fact, for the larger growth rate

case, the equilibrium density gradient also plays a role in limiting the power transfer on the

inner side).

Figure 1 shows the structures formed by test-particle markers in the (Θ, Pφ) plane, for
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FIG. 3: Contour plot of the initial distribution function in the velocity

space for fast ions. Note that M and U are reported in units of TH/ΩH0

and
√

TH/mH . Passing-trapped particle boundaries evaluated at the

inner (r/a = 0.2, solid line) and outer (r/a = 0.8, dashed line) limits of

the mode’s radial domain are shown.

the BAE case considerd in Fig. 4. As pointed out in Sect. II, the formation of Θ−bounded

orbits in this plane corresponds to a net particle flux in the Pφ direction and a consequent

flattening of the resonant-particle density profile. This is shown in Fig. 8, where the test-

particle density radial profile is plotted, at saturation, for the two cases considered in Fig. 7.

Mode and resonance structures, already shown in Fig. 7, are also reported for comparison.

We see that the density flattening at saturation extends over a radial region limited by the

resonance condition in the lower growth-rate case; by the mode width, in the larger growth-

rate one. This emerges even in a more apparent way, from Fig. 9, which compares, for

the BAE XHMGC simulations, the radial widths of mode, resonance and density-flattening

region (at saturation), at different values of the linear growth rate. The radial width of

the saturation flattening region is limited by the resonance width in the low-γ limit; by the

mode width, in the large-γ limit.

Figure 10 reports the saturation amplitude of the scalar potential versus the linear growth

rate for the same cases considered in Fig. 9. We see that the transition from the low−γ
regime (linear power transfer and density flattening limited by the resonance width) to the

high−γ regime (power transfer and flattening limited by the mode width) mirrors into a

corresponding transition from a quadratic γ scaling for the saturation amplitude to a linear
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FIG. 4: Energy spectrum for the scalar potential, in the (r, ω) plane, for

the BAE driven by fast ions with nH0/ni0 = 0.0014, simulated by

XHMGC. The solid line represents the shear Alfvén continuum with

thermal-ion kinetic effects included. The mode is located in the

thermal-ion gap.

one. These two regimes have been dubbed, respectively, resonance detuning and radial

decoupling [18, 21].

B. HAGIS results

As far as HAGIS is concerned, here we present results of simulations related to a specific

case, connected to the benchmark case [51, 52] carried out in the frame of the International

Tokamak Physics Activity (ITPA). Such benchmark, which involved several numerical codes

devoted to the investigation of interactions between fast ions and Alfvén modes, was set

up with reference to a large aspect ratio circular magnetic surface Tokamak equilibrium

(a = 1 m, R0 = 10 m), with an equilibrium on-axis toroidal magnetic field B0 = 3T. The
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FIG. 5: Radial structure of the modulus of the different poloidal

harmonics of the scalar potential, ϕmn (with n = 2 and m ranging from

1 to 6), for the same case considered in Fig. 4.
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FIG. 6: Power transfer density P (r,M,U), integrated over a toroidal

shell centred around the mode peak, for the same case considered in

Fig. 4. M and U normalisation are the same as in Fig. 3. Same

conventions as in Fig. 3 is also used for dashed and solid lines.
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FIG. 7: Resonance radial structure, represented by the radial profile of

the quantity γ/[(ω − ωres(r,M0, C0, k))
2 + γ2]−1/2 (green curve),

compared with the mode structure, represented by the radial profile of

the squared modulus of the perturbed scalar potential integrated over

poloidal and toroidal angles (black curve), and the effective linear-phase

power transfer one (red curve), for the fast-ion selected sets, in the same

case considered in Fig. 4. Two different values of the growth rate are

considered. The radial extension of power transfer density is limited by

the resonance width, for low γ values (left). For large γ values (right),

the resonance width does not yield a significant constraint on the power

transfer, which is instead limited by mode and density-gradient width

(the latter, mainly on the inner side).

bulk plasma pressure profile is given by

p(s) = (7.17 · 103 − 6.811 · 103s− 3.585 · 102s2) N/m2, (19)

while the influence of the fast-ion pressure on the magnetic equilibrium is neglected. The

resulting safety factor profile is shown in Fig. 11. Uniform density and temperature are

assumed for both electrons and bulk ions (hydrogen): ni = ne = 2.0 · 1019 m−3 and Ti =

Te = 1.0 keV. The initial distribution of fast ions (deuterium) is assumed to be a Maxwellian,

with uniform temperature TH ranging (for the benchmark analysis) from 0 to 800 keV, and
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FIG. 8: Test-particle density profile at saturation (red curve) for the

test-particle samples compared with the unperturbed one (dashed blue

curve), for the same cases considered in Fig. 7. Mode structure is also

reported (black curve) along with the resonance structure (green curve).

The width of the density flattening region at saturation is limited mainly

by the finite resonance width, in the lower growth-rate case (left); by the

finite mode width, in the larger growth-rate case (right). Note that in

this latter case we use conventionally the expression “flattening” to refer

to a strong distortion of the resonant particle density profile.

density profile given by

nH(s) = nH0c3 exp

[

−c2
c1

tanh

(

s− c0
c2

)]

(20)

with nH0 = 1.44131 · 1017 m−3, c0 = 0.49123, c1 = 0.298228, c2 = 0.198739, and c3 =

0.521298. In the present paper, we fix TH = 400 keV, while varying nH0 from 0.6 · 1016 to

17.5 · 1016 m−3. We will neglect finite fast-ion Larmor radius effects, while retaining finite

orbit-width effects.

A single toroidal number (n = 6) TAE is obtained, for the considered bulk-plasma equilib-

rium (that is, neglecting the fast-ion contribution), from the code Ligka, with real frequency

ω = 0.28τ−1
A0 (where τA0 = R0/vA0 is the on-axis Alfvén time). The radial structure of the

retained poloidal harmonics (m from 9 to 12) is shown in Fig. 12. The mode amplitude is

evolved in time according to the fast-ion response, while its radial structure and real fre-
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FIG. 9: Radial width of mode (red dots), resonance (blue dots) and

density-flattening region at saturation (green squares), at different

values of the linear growth rate, for XHMGC simulations. Here, we have

conventionally defined the mode width as the width of the region where

|φ(r)| > 0.05|φ(r0)|; the resonance width, that of the region where

|γ/[(ω − ωres(r,M0, C0, k))
2 + γ2]1/2 > 0.2|. The width of the saturation

flattening region is limited by the resonance width in the low-γ limit; by

the mode width, in the large-γ limit.

quency are kept fixed. In order to get saturating modes, a time independent damping is

included in the amplitude evolution, equal, for each case, to 15% of the linear drive (that is,

the linear growth rate obtained in the absence of damping).

Figure 13 shows the contour plot, in the velocity space, for the mode-particle power

exchange integrated over a toroidal shell centred around the radial localisation of the mode,

for the considered cases. We see that the mode is driven unstable by the transit resonance

with co-passing and counter-passing particles. Form this plot we can identify the coordinates

(r0,M0, U0) corresponding to the maximum drive and, then, the slice around M = M0 and

C = C0 ≡ C(r0, 0,M0, U0) representative of the relevant resonant-particle dynamics. The
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FIG. 10: Scaling of saturation amplitude of scalar potential (defined as

the radial peak, in units of TH/eH , of the dominant poloidal harmonic)

versus the linear growth rate γ for XHMGC simulations. The reference

quadratic and linear γ scaling are also shown.

choice adopted for the simulations reported in this paper is r0/a = 0.5, M0ΩH0/TH = 0.2

and U0/vH = 1.18, corresponding to C0/TH = −4.49

Figure 14, analogous to Fig. 7, compares the radial structure of the power transfer density

(in the linear phase) with that of the mode and the radial width of the resonance. As in the

XHMGC case, the radial extension of the power transfer region is limited by the resonance

width for weak modes; by the mode width, for the stronger modes. Figure 15 shows the

formation of closed-orbit structures in the (Θ, Pφ) plane, separated from transit orbits, in

the nonlinear phase of the simulation considered in Fig. 14. As discussed in Sect. IID, it

corresponds to a net outward flux of resonant particles, with a consequent flattening of their

density profile. Also in this case, saturation is reached as the density flattening extends

over the narrowest of the two relevant regions: that limited by the resonance width, for low

growth rate; that limited by the finite mode width, for large growth rate. This is shown in

Figs. 16 and 17, while Fig. 18 shows the corresponding transition from quadratic to linear
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FIG. 11: The q profile for the ITPA benchmark equilibrium. Note that

with a so flat profile, there is no significant difference between s and r/a.

γ scaling for the mode saturation amplitude.

C. PIC1DP results

The code PIC1DP is applied here to a simulation of the bump-on-tail instability. The

initial distribution function for a homogeneous electron beam-plasma system can be written

as

fe0(v) =
ne√
2πvth

e
− 1

2
v
2

v2
th +

neb√
2πvthb

e
− 1

2

(v−vd)
2

v2
thb (21)

with vth being the electron thermal velocity, vd the beam velocity and vthb the beam thermal

spread. In the simulations presented in this paper, we fix vthb = vth and vd = 5vth. We vary,

instead, the shape of the bump corresponding to the term proportional to neb in Eq. 21,

by varying the ratio neb/ne. Figure 19 shows fe0(v) for the case neb/(ne + neb) = 0.004.

The bump is also shown, in the same Figure, in an expanded scale: it gives rise to a

positive gradient in a certain velocity range lower than the beam velocity vd. The electron
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FIG. 12: Radial mode structure of the n = 6 TAE as calculated by

Ligka with poloidal harmonics m = 9− 12, with m = 10, 11 being the

dominant ones.

distribution function is then perturbed by a space dependent amount

δfe(x, v) = ν cos(kx)fe0(v) (22)

with ν ≪ 1. In all the cases considered in the following, k = 0.24/λDe, with λDe ≡
vth/ωpe being the Debye length, and ωpe ≡

√

4πnee2/me the electron plasma frequency. The

perturbed system is periodic in the x direction. In our simulations, a single wavelength

[0, L = 2π/k] is considered, with particles leaving the system at x = 0 or x = L being

re-injected, from the opposite side, with the same velocity v.

In this 1D system, the free-energy source for instability is yielded by the positive derivative

of fe0(v) associated to the bump, while the transit resonance assumes a very simple form:

ωres(v) = kv. (23)

In the case considered in Fig. 19, we find that an unstable mode exists, with frequency
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FIG. 13: Power transfer density P (r,M,U), integrated over a toroidal

shell centred around the mode peak, for the same case considered in

Fig. 12. As in Fig. 3, M and U are reported in units of TH/ΩH0 and
√

TH/mH . Passing-trapped particle boundaries evaluated at the inner

(s = 0.46, solid line) and outer (s = 0.53, dashed line) limits of the

mode’s radial domain are shown.
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FIG. 14: Same as Fig. 7 for HAGIS TAE simulations. Two different

values of the growth rate are considered. The radial extension of power

transfer density is limited by resonance width, for low γ values (left); by

mode radial width, for large γ values (right).
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FIG. 15: Same as Fig. 1 for the simulation considered in Fig. 14. Colour

convention is the same adopted in Fig. 1. The formation of closed-orbit

structures, separated from transit orbits, can be seen in the nonlinear

phase (centre and right frames).

0

1

mode
resonance

0

1

mode
resonance

FIG. 16: Same as Fig. 8 for the simulation considered in Fig. 14. The

width of the density flattening region at saturation is limited mainly by

the finite resonance width, in the lower growth-rate case (left); by the

finite mode width, in the larger growth-rate case (right).

ω ≃ 1.0732ωpe and growth rate γ ≃ 0.013ωpe. The resonance velocity is then

vres =
ω

k
≃ 4.47vth. (24)

Analogously to what we have done for XHMGC and HAGIS simulations, we can analise

the behaviour of resonant particles by mapping their orbits on the plane (Θ, v), with the
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FIG. 17: Radial width of the density flattening region (green squares) at

saturation versus γ for HAGIS simulations, compared with mode width

(red dots) and resonance width (blue dots). The latter quantities are

defined as in Fig. 9.

wave phase given, in this case, by Θ = ωt−kx. As we are treating a 1D problem, we do not

need to cut the phase space into slices, then focusing our investigation on the slice where the

power transfer is peaked: indeed, the whole phase space is reduced to a 2D surface. Rather

then resorting to the evolution of a suited set of test particles belonging to a particular phase-

space slice, we can just analyse the behaviour of a sample of the particles effectively evolved

in the simulation. Figure 20 refers to the nonlinear phase of the mode evolution, for the

PIC1DP simulation corresponding to the case considered in Fig. 19. The colour convention is

analogous to that adopted in Figs. 15 and 1: in this case, blue refers to particles whose initial

velocity was lower than vres; green, to particles initialised with v > vres. As in the XHMGC

and HAGIS cases, the formation of closed-orbit structures, separated from transit orbits

is shown. It corresponds, here, to a flattening of the velocity-space distribution function

around vres and the consequent depression of the v−gradient acting as free-energy source for

the mode growth. This is shown in Fig. 21, where the resonance structure is reported too.
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FIG. 18: Scaling of saturation amplitude of scalar potential versus γ for

HAGIS simulations. The amplitude is defined as the radial peak of

[
∫

dθdφ|ϕ(r, θ, φ)|2]1/2 and is reported in units of TH/eH . The reference

quadratic and linear γ scaling are also shown.

We see that the width of the flattening region is of the order of the resonance width in the

velocity space. In this 1D case, the only constraint on the mode-particle power exchange

comes from the finite resonance width, as the mode does not exhibit any structure in the

velocity space (more precisely, in the large growth rate limit, characterised by large resonance

width, a more stringent constraint could come from the limited width of the velocity region

in which the initial distribution gradient is positive). Figure 22 shows how the width of the

flattening region at saturation and the resonance width vary with increasing values of γ,

corresponding to increasing values of neb/(ne + neb). We see that the former is essentially

limited by the latter over the whole γ range. For the same cases, Fig. 23 shows that the

mode saturation amplitude (here, represented by the perturbed electron density amplitude)

scales quadratically with γ, consistently with the results obtained, for XHMGC and HAGIS

simulations, in the respective resonance detuning regimes.
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FIG. 19: Normalised initial velocity-space distribution function for

PIC1DP simulations (left). The bump corresponding to the term

proportional to neb in Eq. 21 is shown, in the right frame, in an

expanded scale. Here, neb/(ne + neb) = 0.004.

IV. NONLINEAR PENDULUM MODEL

In Sect III, we have seen that the basic saturation mechanism is the distortion of the

resonant-particle distribution function around the resonance (Figs. 8, 16 and 21) , associated

to the formation of closed-orbit structures in the (Θ, Pφ) (Figs. 1 and 15, for XHMGC

and HAGIS) or (Θ, v) plane (Fig. 20, for PIC1DP), which we conventionally indicate as

distribution-function flattening. In order to get a quantitative analysis of this process, we

resort to a simplified model, based on the following nonlinear pendulum system:

dx

dt
≡ −A S

|S| sinΘ (25)

dΘ

dt
≡ Sx (26)

dA

dt
= γ̄A (27)

γ̄ = γ

{

1− ∆rflat
∆rmin

.

}

. (28)

Here, x ≡ r − rres is the radial distance from the resonance surface (where dΘ/dt = 0),

A > 0 is proportional to the mode amplitude (responsible for the radial drift, Eq.25), and

S is related to the radial slope of the resonance frequency: ωres ≃ ω − S(r − rres), which

is responsible for the wave-particle phase change in Eq. 26. The mode amplitude evolution
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FIG. 20: Particle markers in the (Θ, v) plane in the nonlinear phase of

the mode evolution, for a PIC1DP simulation corresponding to the case

considered in Fig. 19. Here, Θ = ωt− kx, and v is normalised to vth.

Colour convention is analogous to that adopted in Fig. 15: in this case,

blue indicates particles whose initial velocity was lower than the

resonance value vres ≃ 4.47vth; green, those with initial velocity higher

than vres. The formation of closed-orbit structures, separated from

transit orbits is observed.

is determined by Eq. 27. The effective growth rate γ̄ is determined, at each time, by the

linear growth rate γ and the stabilising effect of the density flattening (here represented by

the quantity ∆rflat, to be determined), which progressively erodes the mode-particle power-

transfer region, limited by ∆rmin ≡ min[∆rmode,∆rres], that is the narrowest of the two

widths: the mode width ∆rmode and the resonance width ∆rres (cf. Fig. 9).

In the limit of very small linear growth rate, we could evaluate ∆rflat treating the mode

amplitude as a slowly varying quantity. In this “static” limit, the density flattening process

would involve the radial width of the separatrix between closed and drifting orbits. We can

compute such width noting that, neglecting the time dependence of A, the quantity

E(x,Θ) ≡ 1

2

(

dΘ

dt

)2

− A|S| cosΘ =
1

2
(Sx)2 − A|S| cosΘ (29)

is a constant of motion. The separatrix crosses the axis x = 0 at Θ = π. Then, it is
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FIG. 21: Velocity-space distribution function at saturation (red solid

line), for the same case considered n Fig. 19, compared with the initial

distribution function (black dashed line), in the velocity region around

vres. The profile flattening associated to the formation of closed-orbit

structures observed in Fig. 20 is apparent. The resonance structure,

represented by the quantity γ/[(ω − ωres(v))
2 + γ2]−1/2 is shown for

comparison.

characterised by a value of E given by

Esep ≡ E(0, π) = A|S|. (30)

We can then compute its half width xsep from the condition

E(xsep, 0) = Esep, (31)

that is
1

2
(Sxsep)

2 − A|S| = A|S|; (32)

from which

∆rstaticflat ≃ 2 |xsep| = 4

(

A

|S|

)1/2

. (33)
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FIG. 22: Width of the flattening region in the velocity space at

saturation versus γ compared with the resonance width, for PIC1DP

simulations. Increasing values of γ corresponds to increasing values of

neb/(ne + neb).

We observe that this static approach, in which the mode amplitude A is treated as a

constant while evaluating its effect on the density flattening, is appropriate only in the very

low growth rate limit: γTorb ≪ 1, with Torb being the time needed for a particle to complete

its closed orbit. Even in this limit, however, Torb is an increasing function of Θ0 ∈ [0, π[,

where Θ0 is the value of Θ at which the orbit crosses the axis x = 0:

Torb(Θ0) =
4

(|S|A)1/2K(sin2 Θ0

2
), (34)

with K being the elliptic integral of the first kind [53]. Deeply wave-trapped particles

(Θ0 → 0) will then be characterised by a smaller Torb than particles close to the separatrix

(Θ0 → π); for the latter particles, for which the bounce time tends to infinity, the static-limit

assumption fails even for low values of the linear growth rate. It is then worth modifying

the estimate of ∆rflat given in Eq. 33 by assuming that the density flattening involves, at

a certain time, only a fraction of the whole region contained within the virtual separatrix
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FIG. 23: Scaling of saturation amplitude of the perturbed electron

density (normalised to the initial electron density) versus γ for PIC1DP

simulations. The reference quadratic γ scaling is also shown.

that would correspond, in the static limit, to the actual instantaneous amplitude. We write

this condition in the form

∆rflat ≃ 2 |xmax| , (35)

where |xmax| is the largest radial excursion observed, at the considered time, among all the

particles captured by the wave (that is, particles that have crossed the resonance surface,

x = 0). Figure 24 shows the plot of traces of particle trajectories in the plane (Θ, x) evolved

according to Eqs. 25-28 and 35. The density flattening width, Eq. 35, and the width that the

separatrix between closed and open trajectories would have for a mode amplitude statically

equal to that dynamically reached at the considered time are evidenced. It is apparent that

the latter width (corresponding to the static-limit evaluation of the flattening region, Eq. 33)

is much larger than the former. This is confirmed by Fig. 25, comparing the time evolution

of ∆rflat and ∆rstaticflat

The above model, with ∆rflat defined by Eq. 35, appears to be suited to mimic simulation

results presented in Sect. III with respect to the saturation dynamics. Figure 26 shows indeed
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FIG. 24: Traces of particle trajectories in the plane (Θ, x) evolved

according to the nonlinear pendulum model (Eqs. 25-28), for S = 0.02,

∆rmode = 0.8 and γ = 0.016. Red traces correspond to particles that

have already crossed, at the considered time, the resonance (x = 0).

Solid horizontal red lines indicate the limits of the region explored by

such particles; their distance plays the role, in the model, of the density

flattening width ∆rflat. Blue lines delimit the width ∆rstaticflat that the

separatrix between closed and open trajectories would have for a mode

amplitude statically equal to that dynamically reached at the considered

time. Note that the plot refers to the saturation time, corresponding to

∆rflat = ∆rmin, with ∆rmin ≡ ∆rmode for the present case.

the scaling of saturation mode amplitude versus γ obtained by numerical solution of Eqs. 25-

28 and 35. It can be seen that a transition from quadratic to linear scaling is observed, as

γ increases, causing ∆rres to exceed ∆rmode.

Let us try to get an approximate analytic solution of this system, in order to interpret

this behaviour. To this aim, we assume that ∆rflat is mainly determined, at each time, by

particles that satisfy, while evolving from resonance-crossing time to the actual time, the
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FIG. 25: Flattening width ∆rflat, defined as the maximum x distance

among particles that have crossed the resonance (Eq. 35), compared

with the naive static-limit solution ∆rstaticflat yielded by Eq. 33. It is

apparent that the static solution largely overestimate the effective

flattening width.

condition sinΘ ≃ 1. We also assume that the quantity |xmax|, which determines ∆rflat, can

be computed by following the same couple of particles (crossing the resonance in opposite

directions) for the entire evolution of the system. This assumption, corresponding to mea-

suring the whole particle population behaviour from that of a couple of leading particles,

allows us to reduce our system to the following one:

d|xapproxmax |
dt

≃ A (36)

dA

dt
= γ̄A (37)

γ̄ ≃ γ

{

1− 2|xapproxmax |
∆rmin

}

, (38)

or

γ

{

1− 2|xapproxmax |
∆rmin

}

d|xapproxmax |
dt

=
dA

dt
. (39)
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FIG. 26: Scaling of saturation mode amplitude versus γ for simulations

of the nonlinear pendulum model. The reference quadratic and linear γ

scaling are also shown.

Equation 39 yields the solution

∆rapproxflat ≡ 2|xapproxmax | = ∆rmin

[

1−
(

1− 4A

γ∆rmin

)1/2
]

. (40)

Figure 27 compare the exact numerical solution for the flattening width, as defined by Eq. 35,

with the approximate solution, Eq. 40. The agreement is very satisfactory. From the same

Figure, it can be seen that | sin(Θ)| ≃ 1, essentially constant along the particle motion, is

a good approximation, as far as we are interested in the behaviour of the largest-excursion

particles.

Figure 28 plots the exact solution, ∆rflat, versus the approximate one, ∆rapproxflat , for dif-

ferent cases, characterised by different values of γ. It is apparent that the dependence on

the linear growth rate is well retained by the approximate solution, as well.

In order to get simple expression for the scaling of the saturation mode amplitude with
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FIG. 27: Flattening width, defined as in Eq. 35, compared with the

approximate solution yielded by Eq. 40. Deviations of | sin(Θcross)| and
| sin(Θactual)| from 1 are also reported, versus time, for the particles that,

at each time, exhibit the largest x excursion from the resonance. Here,

Θcross is the phase value at which the particle has crossed the resonance;

Θactual is the phase value of the same particle at time t. It can be seen

that | sin(Θ)| ≈ 1 is a good approximation, as far as we are interested in

the behaviour of the largest-excursion particles.

the growth rate, we consider the low-amplitude limit of ∆rapproxflat :

∆rapproxflat ≃ 2A

γ
. (41)

The exact solution ∆rflat is plotted versus this low-amplitude limit solution in Fig. 29. We

can then obtain an approximate expression for the saturation condition:

Asat ≃ ∆rminγ

2
(42)

We can then evaluate ∆rres, consistently with the linearisation of ωres around rres, as

∆rres ≃ 2
γ

|S| . (43)
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FIG. 28: Flattening width, defined as in Eq. 35, plotted versus the

approximate solution yielded by Eq. 40, for different cases, characterised

by different values of the linear growth rate (the dashed line would

represent the perfect conincidence between the two quantities). The

dependence on γ is apparently well retained by the approximate solution.

Let us assume, instead, that the mode width does not depend on the linear growth rate (cf.

Fig. 9). For ∆rres < ∆rmode, we then find

Asat ≃ ∆rresγ

2
≃ γ2

|S| . (44)

For ∆rmode < ∆rres, we find

Asat ≃ ∆rmodeγ

2
. (45)

These results appear to be consistent with the quadratic and linear scalings observed, for

low and high γ, respectively, in Fig. 26.
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FIG. 29: Flattening width, defined as in Eq. 35, plotted versus the

solution yielded by Eq. 41, for the same case considered in Fig. 28. As

expected, the agreement is good for not too large amplitudes.

V. APPLICATION OF THE PENDULUM MODEL PREDICTIONS TO DIFFER-

ENT CODE RESULTS

In the present Section we check whether saturation dynamics observed in the simulations

presented in Sect. III can be interpreted in terms of the results obtained from the nonlinear

pendulum model. In Sect. IV, we have seen that the transition from a quadratic to a

linear growth-rate dependence of the mode amplitude at saturation is consistent with the

evolution of the radial width of the density flattening region specified by the approximate

solutions given by Eq. 40 or, for not too large mode amplitudes, Eq. 41. Noting that in the

nonlinear pendulum model the existence of a density profile is only assumed, and its evolution

represented by the quantity ∆rflat conventionally defined by Eq. 35, we have first to check

whether an analogous definition applied to our plasma simulations is suited to measure the

effective density flattening process. Figure 30 compares the radial separation of the steepest

resonant-particle density gradients with the flattening width, defined as in Sect. IV, Eq. 35.

36



The former quantity can be considered an effective measure of the density flattening; the

latter apparently reproduce it in a satisfactory way (in the following, we shall indicate it as

density-flattening width). The maximum radial spread among particles that have completed

a full bounce in the (Θ, Pφ) plane is also reported for comparison. This quantity does not

represent a good approximation of the gradients separation, consistently with the fact that

particle motion determining density flattening can experience only a limited amount of the

phase variation due to the shift from the resonance radius. The formation of closed orbits

(full bounce) requires a longer time. Figures 31 and 32 shows analogous quantities for

HAGIS and PIC1DP simulations.

We can now check the validity of the approximate pendulum-model prediction, Eq. 41, for

the evolution of the density-flattening width. Figure 33 plots the density-flattening width,

defined as in Fig. 25, versus the corresponding approximate prediction, for several XHMGC

code simulations, characterised by different linear growth rates. Figures 34 and 35 report

the corresponding results for HAGIS and, respectively, PIC1DP simulations (in the latter

case, relative to the flattening of the velocity-space distribution function). It is apparent

that the proportionality of the flattening width to the ratio between the instantaneous mode

amplitude and the linear growth rate is well satisfied in all cases. We can then conclude

that the analysis carried on in Sect. IV yields a satisfactory approximation of the nonlinear

evolution both of bump-on-tail instability and more complex single toroidal number Alfvén

gap modes.

VI. EXPECTED RADIAL DISPLACEMENT OF FAST IONS

In the present Section, we will estimate, from the simulation results presented in the

previous sections, an upper limit to the expected radial displacement of fast ions induced by

single toroidal number gap modes. We will consider only passing fast ions in the presence of

BAEs, TAEs or EAEs. The most unstable gap modes in next-generation burning plasmas,

like those corresponding to ITER scenarios, are expected to be characterised by n of the order

of some tens[5]. For such large-n modes, the radial width of the single poloidal harmonic

can be estimated as

∆rharmm ≃ rgapm

m
≃ rgapm

nq
(46)
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Δ

τ

FIG. 30: XHMGC results: radial separation of the steepest density

gradients (black circles) versus time, compared with the flattening width

(red dots), defined as in Sect. IV, Eq. 35. Note that the values

corresponding to the former quantity exhibit both noisy and stepwise

behaviour; this is due to the fact that, for a given number of test

particles, they result from the compromise between two conflicting

requirements: reducing the numerical noise (by adopting a coarser radial

grid for computing the density profile), and increasing the spatial

resolution (by adopting a finer grid). The maximum radial spread

among particles that have completed a full bounce in the (Θ, Pφ) plane

is also reported for comparison (blue squares).

with rgapm being the radial localisation of the gap implicitly yielded by

q(rgapm ) =
m+ α

n
, (47)

with α = 0, 1/2 or 1, for, respectively, BAEs, TAEs and EAEs. Here and in the following,

for simplicity, we treat the magnetic equilibrium in the large-aspect-ratio circular-magnetic-

surface limit. From Eq. 47, we can compute the radial distance between the considered gap
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FIG. 31: Same as Fig. 30 for a HAGIS simulation.
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tω

FIG. 32: Same as Fig. 30 for a PIC1DP simulation.
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γ=

FIG. 33: Flattening width, defined as in Fig. 25, versus the approximate

solution yielded by Eq. 41 for several XHMGC simulations,

characterised by different linear growth rates. The dashed line represents

the pure proportionality relationship between the two quantities. Here,

the growth rates is reported in units of 1/τA0; the amplitude of the

scalar potential, in units of TH/eH .

and those relative to adjacent poloidal harmonics as

∆rgapm ≃ rgapm

nq(rgapm )|s| , (48)

with s being the magnetic shear, defined as

s ≡
(

r
q′

q

)

r=rgapm

. (49)

We can then distinguish two regimes with respect to the mode structure: a low-shear regime

(s << 1), in which the mode structure is constituted essentially by a single poloidal harmonic

(for BAEs) or by a couple of harmonics (m and m+ 1, for TAEs; m and m+ 2 for EAEs),

and a high-shear regime (s >∼ 1) in which the radial distance between different-harmonic

gaps is smaller than the width of the single harmonic (cf. Eqs. 46 and 48), and a global

mode exists, formed by many harmonics.
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FIG. 34: Same as Fig. 33, for several HAGIS simulations, characterised

by different linear growth rates. Here, the growth rates is reported in

units of 1/τA0; the amplitude of the scalar potential, in units of TH/eH .

In the previous Sections, we have seen that the radial displacement of resonant fast ions

gives rise to a density flattening over a radial region whose width is approximately given, at

saturation, by

∆rsatflat ≃ min [∆rres,∆rmode] , (50)

Let us estimate, in the two shear regimes just identified, the quantities ∆rres and ∆rmode.

In the low-shear regime, ∆rmode corresponds to the width of the single harmonic:

∆rmode ≃
rgapm

nq(rgapm )
. (51)

The quantity ∆rres can be evaluated, in terms of the resonance frequency (for passing fast

ions),

ωres(r,m, k) ≃ [(nq −m)σ + k]ωb, (52)

as

∆rres ≃ γ

∣

∣

∣

∣

∂ωres

∂r

∣

∣

∣

∣

−1

r=rgapm

. (53)
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FIG. 35: Same as Fig. 33, for several PIC1DP simulations, characterised

by different linear growth rates. Note that in this case, the flattening is

measured in the velocity space. Here, the growth rate is reported in

units of ωpe; the amplitude of the perturbed electron density is

normalised to the initial electron density.

This conventional definition correspond to the half width of the resonance structure defined

in Fig. 7 at 1/
√
2 of its maximum. From ωb ≃ σU/(qR0), we get

∂ωres

∂r
≃ U ′

U
ωres +

(m− kσ)

q

U

R0

q′

q
. (54)

with U = U(r) determined, once fixed C = C0 and M =M0, by the following equation:

U2 − 2ωR0

n
U +

2C0

nmH

+
2M0ΩH

mH

− 2ωeHR0

nmHc
(ψeq − ψeq0) = 0. (55)

We then get

U ′

[

U − ωR0

n

]

≃ ωeHR0

nmHc

dψeq

dr
(56)

or
U ′

U
≃ ωΩHr

(ωR0 − nU)qU
. (57)
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From Eqs. 47 and 52 and the resonance condition

ωres(r
gap
m ) = ω, (58)

we obtain

U(rgapm ) ≃ σ
qR0ω

|α + kσ| (59)

and, in the limit of large n,
∣

∣

∣

∣

∂ωres

∂r

∣

∣

∣

∣

rgapm

≃
∣

∣

∣

∣

nsqωσ

|α + kσ|r − (α + kσ)2

nq3R2
0

r

ρH
vH

∣

∣

∣

∣

rgapm

. (60)

Note that for BAEs (α = 0) only bounce harmonics k 6= 0 can be taken into account.

We expect that most unstable modes are those characterised by orbit widths of the order

of the width of the dominant poloidal harmonic:

∆rorbit ≃
qvA
ΩH

≈ ∆rharmm ; (61)

that is
rgapm

ρH
≃ nq2

vA
vH
. (62)

For such modes, Eqs. 53 and 60 yield

∆rres ≃
γ

ω

rgapm

nq(rgapm )
K. (63)

withe

K ≡
∣

∣

∣

∣

sσ

|α + kσ| −
(α + kσ)2vAr

nq2R2
0ω

∣

∣

∣

∣

−1

rgapm

. (64)

We see that, notwithstanding the ratio γ/ω is expected to be quite small in burning-plasma

scenarios, mode saturation can enter the radial decoupling regime (∆rres > ∆rmode) if the

factor K is large enough. Even in such cases, however, the width of density-flattening region

is limited by the width of the single poloidal harmonic.

In the high-shear regime (|s| >∼ 1), the question is whether the width of the density-

flattening region at saturation can be limited by the potentially large width of the envelope

of the many harmonics constituting the global mode. If this were the case, even the effect of

a single toroidal number gap mode could be deleterious for fast-ion confinement. In favour

of a positive answer, a global (multi-harmonic) resonance mechanism could be envisaged,

making the effective resonance width large enough. This mechanism should work as follows.

A particle, resonating, at the gap position rgapm , with the harmonic (or the harmonics)
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yielding that gap is displaced by a radial amount of the same order of the gap separation

∆rgapm , until it mainly feels the interaction with the adjacent harmonic (or harmonics). If

the resonance frequency at the new position (with the new couple of harmonics) is still

adequately satisfied, the particle can be further displaced up to the next gap, and so on.

Differently form the previous calculation of ∆rres, in which we derived ωres with respect to

r, while keeping m and k constant, in the present case we have to keep k constant, while

varying m and rgapm at the same time, by discrete amounts:

∆rglobalres ≃ γ

∣

∣

∣

∣

∆ωres

∆r

∣

∣

∣

∣

−1

r=rgapm

, (65)

with
∆ωres

∆r
(rgapm ) ≡ ωres(r

gap
m+∆m,m+∆m, k)− ωres(r

gap
m ,m, k)

rgapm+∆m − rgapm
. (66)

Figure 36 shows, for a generic case, the frequency values entering the discrete derivative,

Eq. 66. Expanding U(rgapm+∆m) around r
gap
m as

U(rgapm+∆m) ≃ U(rgapm ) + U ′(rgapm )(rgapm+∆m − rgapm ) (67)

and using the relationships

q(rgapm+∆m) = q(rgapm ) +
∆m

n
(68)

and

rgapm+∆m − rgapm ≃ ∆m

n

rgapm

q(rgapm )s
, (69)

we find

∆rglobalres ≃ γ

ω

∣

∣

∣

∣

s

r
+
vA(α + kσ)2

R2
0ωq

∣

∣

∣

∣

−1

r=rgapm

(70)

For TAEs and EAEs, we can approximate ω by the expression

ω ≃ α
vA
qR0

. (71)

We then get

(∆rglobalres )TAE,EAE ≃ γ

ω

rgapm

|s| ≃ γ

ω

nq(rgapm )

|s| ∆rharmm . (72)

As nq >> 1, if such global resonance mechanism were effective, the density flattening

could extend for a radial region larger than the single poloidal harmonic, in spite of not too

large growth rates. In order the global resonance can act, however, the resonant particle

needs to be displaced by the original dominant harmonic by a radial distance of the order

44



ω

r

r
m-1

r
m

r
m+1

ω
 m-1

ω
 m

ω
 m+1

FIG. 36: Radial profile ωres(r,m
′, k) of the resonance frequency, for three

poloidal harmonics m′ = m− 1,m,m+ 1 and the same value of k (solid

lines). The localisation rgapm′ of the corresponding adjacent gaps is

evidenced (for simplicity, only the cylindric-limit continua are

represented, by dashed lines, for the relevant harmonics). Green squares

show the frequency values, ωres(r
gap
m′ ,m′, k), entering the discrete

derivative, Eq. 66.

of ∆rgapm . From Eq. 63, however, we see that in the high-shear regime the expression for the

single-harmonic resonance width ∆rres can be approximated as

(∆rres)TAE,EAE ≃ γ

ω
|α + kσ|∆rgapm << ∆rgapm . (73)

We then see that the condition |s| >∼ 1, required for a global mode to exist, makes the radial

profile of the single-harmonic resonance frequency so sharp that the radial displacement of

the resonant particles, for low/moderate growth rates, is limited to a small fraction of the

distance between adjacent gaps (and, a fortiori, the radial width of the single harmonic).

For BAEs, the real frequency is approximately given by

ω ≃
(

7

2

Ti
mi

+
2Te
mi

)1/2
1

R0

≡
(

7

2
+

2Te
Ti

)1/2

β
1/2
i

vA
R0

, (74)
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with Te and Ti being, respectively, the bulk-electron and bulk-ion temperatures, and βi the

ratio between bulk-ion kinetic and magnetic pressure. Equations 72 and 73 are replaced by

(∆rglobalres )BAE ≃ γ

ω

∣

∣

∣

∣

∣

∣

∣

s

r
+

k2

β
1/2
i qR0

(

7
2
+ 2Te

Ti

)1/2

∣

∣

∣

∣

∣

∣

∣

−1

r=rgapm

(75)

and

(∆rres)BAE ≃ γ

ω

∣

∣

∣

∣

∣

∣

∣

nqsσ

|k|r − k2

β
1/2
i qR0

(

7
2
+ 2Te

Ti

)1/2

∣

∣

∣

∣

∣

∣

∣

−1

rgapm

. (76)

We see that the condition (∆rres)BAE > ∆rgapm , needed for the global resonance mechanism

being active can never be satisfied, in the considered limits, if sσ < 0. In this case, indeed,

(∆rres)BAE
<∼
γ

ω

|k|rgapm

nq(rgapm )|s| ≪ ∆rgapm (77)

In the opposite case (sσ > 0), it could be satisfied only if

k2

β
1/2
i q(rgapm )R0

(

7
2
+ 2Te

Ti

)1/2
∼ nq(rgapm )|s|

|k|rgapm
, (78)

but this would imply

(∆rglobalres )BAE ∼ γ

ω

|k|rgapm

nq(rgapm )|s| ≪ ∆rgapm < ∆rharmm . (79)

We can conclude that the global resonance mechanism can hardly affect the confinement of

resonant ions, as far as we are concerned with a single-(large)-n gap mode, and that the width

of the dominant poloidal harmonic constitutes a hard upper bound to the radial displacement

of resonant transit fast ions induced by such mode, irrespectively of the existence of a large

global mode structure formed by many harmonics. Note that taking into account, in the

expression of the resonance frequency, the effect of a finite orbit width of the order of the

poloidal harmonic width (Eq. 61), would bring to recognise that the same particle can

resonate with more than a single harmonic or couple of harmonics[54]. This is, however,

a feature of the basic linear mode-particle interactions, and should not be confused with

the global resonance mechanism caused by successive nonlinear radial displacements. Our

qualitative conclusion on the largest expected overall fast-ion redistribution then maintains

its validity.
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VII. SUMMARY AND CONCLUSIONS

In this paper we have investigated the nonlinear dynamics of Alfvén modes driven un-

stable by fast ions in Tokamaks. Our investigation was focused on gap modes characterised

by a single toroidal number. The evolution of such modes is typically characterised by a

constant frequency. Under such conditions, it is possible to identify two constant of the

perturbed particle motion: the magnetic momentum and a suited combination of toroidal

angular momentum and kinetic energy. The existence of these two invariants allows us to

cut the phase space into slices orthogonal to the corresponding axes. The dynamics of each

slice is not affected by that of other slices; in other words, mode-particle interactions for each

slice evolve in an autonomous way, as no particle flux is allowed from one slice to the other.

We relied on this feature to examine in detail the behaviour of a significant resonant-particle

population; namely, that yielding a peak of the power transfer driving the mode unstable in

the linear phase.

We analysed the results of simulations obtained by different numerical codes, related to

different modes. In particular, XHMGC simulations of n = 2 BAEs were considered, as well

as HAGIS simulations of n = 6 TAEs. Simulations of the bump-on-tail instability performed

by PIC1DP were also considered.

The common aspect presented by all these cases is that mode saturation occurs as the

flattening of the resonant-particle distribution function, induced by the fluxes associated

to the motion of particles captured in the potential well of the wave, extends over the

whole phase-space region where the linear-phase mode-particle power transfer can take place.

Two regimes can be distinguished. The first regime is characterised by the fact that such

power-transfer region is mainly limited by the need of satisfying the resonance condition

|ω − ωres| <∼ γ. This is the case occurring, ceteris paribus, for low values of the growth

rate, sharp profiles of the resonance frequency, large mode structures. The second regime,

occurring in the opposite limits, sees the power-transfer region limited by the finite width

of the mode structure. The two different regimes correspond to different scalings of the

saturation mode amplitude with the linear growth rate: the former (resonance detuning

regime) exhibits a quadratic scaling; the latter (radial decoupling regime), a linear scaling.

We have justified these numerical observation on the basis of a simple nonlinear pendulum

model. For that model, we have recovered an approximate analytic solution yielding the
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instantaneous width of the flattening region in terms of the instantaneous mode amplitude

and the linear growth rate. We have shown that such approximate solution correctly predicts

the scalings of the saturation amplitude with γ obtained from the full numerical solution

of the model, as well as, with a fair agreement, the nonlinear evolution of bump-on-tail

instability and Alfvén gap modes.

The fact that the resonant ion redistribution is limited, depending on the saturation

regime, by resonance width or mode width allows us to obtain an upper bound for the

radial displacement we can expect from the interaction between a single-toroidal-number

gap mode and fast ions. We have evaluated such bound for passing ions in the presence of

large-n BAEs, TAEs and EAEs, showing that, for low shear, a hard limit is set by the radial

width of the quite narrow single poloidal harmonic (of the order of rgapm /nq). If the shear

is large enough to allow for the existence of a global mode constituted by several poloidal

harmonics, the consequent steepening of the radial profile of the resonance frequency yields

an even stricter constraint, further reducing the flattening width by a factor of order γ/ω:

there is no chance, for the transit ion, to be displaced for a relevant fraction of the global

mode width by successive resonant interactions with different poloidal harmonics. This

evaluation could be easily extended to the interaction between gap modes and trapped fast

ions.

This paper does not study more complicate situations, which can, however, be important

in realistic burning-plasma scenarios. In particular, it does not address the dynamics of

Alfvén modes characterised by frequency chirping, the synergic effect of different toroidal

mode numbers, the direct mode-mode coupling (not mediated by mode-particle interactions).

These aspects will be the subject of future investigations.
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