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Abstract

In this work, discriminant analysis is used as the main approach for building a physics based automated classifier for
the discrimination of the edge-localized mode (ELM) plasma instability. The classifier is then applied for distinguishing
type I and type III ELMs from a set of carbon-wall plasmas at JET. This provides a fast, standardized classification of
ELM types which is expected to significantly reduce the effort of ELM experts in identifying ELM types. Further, the
classifier yields a separation hyperplane in terms of global plasma parameters, which provides an insight into the range
of conditions under which specific ELM behaviors occur.
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1. Introduction

Edge-localized modes (ELMs) are magnetohydrody-
namic instabilities occurring in the edge region of high
confinement fusion plasmas. ELMs lead to the ejection
of energy and particles from the plasma core and onto5

the plasma-facing components (PFCs). While they are
beneficial for impurity regulation, in future devices, such
as ITER, large unmitigated ELMs will lead to intolerable
heat loads on the PFCs.

A first characterization of ELMs is the identification of10

their type. Several efforts have been made to statistically
characterize [1] [2] and provide an automated classifica-
tion scheme for ELMs [3] [4] [5]. In this work, a statistical
method, discriminant analysis (DA) is employed for de-
veloping a simple predictive algorithm for distinguishing15

ELM types. As an application of our analysis, we discrim-
inate between type I and type III ELMs in a set of carbon-
wall (CW) plasmas from the Joint European Torus (JET)
tokamak. Herein, the advantage with respect to earlier
ELM classification works is twofold. First, we rely on rou-20

tinely measured global plasma parameters. Second, as DA
yields a separation hyperplane between ELM types, we
obtain an analytical expression enabling verification and
prediction of the ELM regime in terms of these parame-
ters, as well as quantification of the significance of each25
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parameter. Our approach is intended as a tool to support
planning and analysis of experiments.

2. Discriminant analysis

In this section, background on the application of dis-
criminant analysis (DA) [6] to the discrimination of ELM30

types is given. DA enables prediction of the class member-
ship (ELM type) based on a linear or a quadratic combi-
nation of plasma parameters. DA is a parametric method
and assumes that the distribution of the plasma parame-
ters within each class is multivariate normal.35

In this work, two classes (k = 1, 2) of plasmas with type
I and type III ELMs are considered. Each class k with
nk plasmas is denoted by a nk × p data matrix, where p
is the number of plasma parameters. The class-specific
probability density of a plasma x belonging to class k = r40

is denoted as fr(x). Further, πr denotes the prior proba-
bility of plasma x belonging to class r, with Σk

r=1πr = 1.
The posterior probability of a plasma x belonging to class
k = r is obtained by applying Bayes’ theorem:

P (r|x) =
fr(x)πr

Σk
s=1fs(x)πs

. (1)45

The denominator is consistent across all classes; hence it
suffices to estimate class-specific densities fr(x) for each
of the classes. It follows that we classify x in class r if
fr(x)πr is maximal. Each of the class densities is modeled
as a multivariate normal density:50

fr(x) =
1

(2π)p/2
√
|Σr|

exp

(
− 1

2
d2r(x)

)
. (2)
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The Mahalanobis distance of a plasma x to class r is given
as

dr(x) =
√

(x− µr)t(Σr)−1(x− µr). (3)

Linear discriminant analysis (LDA). All classes are con-55

sidered to be sharing a common covariance matrix. Hence,
Σr = Σ for all classes r. Taking the logarithm of fr(x)πr
and after simplifying we obtain for each class, the class
scores lr(x) given by

lr(x) = xtΣ−1µr −
1

2
(µr)tΣ−1µr + log(πr). (4)60

The score lr(x) is a linear function of x and the decision
boundary between two classes is the collection of points x
for which lr(x) = ls(x). In p dimensions the boundary be-
tween two classes is thus a hyperplane. The class centers
and the common covariance matrix for the classes are esti-65

mated from the plasmas for which the ELM type is known
(training data). The standard estimates are:

µr =
1

nr

∑
ki=r

xi, (5)

Σ =
1

n− k

k∑
r=1

∑
ki=r

(xi − µr)(xi − µr)t. (6)

Prior class probabilities are also estimated from the data70

and are given as:

πr =
nr
n
, (7)

where nr is the number of plasmas belonging to class r
and n is the total number of plasmas in the data.

75

Quadratic discriminant analysis (QDA). Classes do not
share a common covariance matrix and the class score
qr(x) is a quadratic function of x. Hence, the decision
boundary between any two classes qr(x) = qs(x) is also
quadratic. Again, the covariance matrix for each class is80

estimated by the sample covariance matrix of the training
samples in that class.

3. Classification of ELM types

Dataset. A dataset comprising 74 type I and 26 type III
ELMy plasmas spanning over the shot range [50564-76483]85

was assembled from the JET CW experiments. This is an
extension of the data set used earlier by Webster et al. [1]
and is the same dataset that was used earlier for the vi-
sualization of the tokamak operational space in [7]. The
analysis, in this work, has been restricted to time inter-90

vals in which the plasma conditions are quasistationary
with approximately constant heating, gas fueling and cen-
tral density. Further, all experiments dealing with ELM
control and mitigation techniques have been excluded.

Figure 1: Histograms of plasma parameters in the analyzed dataset.

The global plasma parameters considered herein are: vac-95

uum toroidal field at R = 2.96 (Bt, T), plasma current
(Ip, MA), line integrated edge density (ne, 1019 m−2), gas
fueling(ΓD2 , 1022s−1), input power (Pinput, MW) and av-
erage triangularity (δavg). Histograms of plasma parame-
ters for each class are presented in Figure 1. From a visual100

inspection of Figure 1, considerable overlap amongst the
two classes can be readily observed, indicating a non-trivial
classification problem.

Performance assessment. Leave-one-out cross validation
is used for assessing generalization capability of the clas-105

sifier. For a dataset with N plasmas, N iterations are
performed where N − 1 plasmas are used for training and
the remaining sample is used for testing. The leave-one-
out cross validated (CV) success rate, which here is quoted
as the percentage of ELMy plasmas correctly classified, is110

in effect, an estimation of the expected performance of the
classifier on an unknown independent dataset.

Predictive capability of each plasma parameter. LDA is
performed on the plasmas represented by each global
plasma parameter individually. In this case, the estimated115

covariance matrices coincide with the variances of the two
classes and the discriminant function is reduced to a dis-
criminating value (DV). This DV, derived under the as-
sumption of equal variances, is then applied for classifica-
tion. The DV is given as:120

DV =
1

2
(µclass 1 + µclass 2). (8)

The leave-one-out CV success rates (%) and DVs are pre-
sented in Table 1. Under the assumption of unequal vari-
ances (QDA), the analysis produces success rates similar to
those presented in Table 1 (differences are ∼ 1%). Further,125

Table 1 reveals that the parameters Pinput and ΓD2
yield
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Plasma Leave-one-out CV DV
parameters success rate(%)
Bt (T) 73.0 2.35
Ip (MA) 74.0 2.34

ne (1019m−2) 74.0 6.45
Pinput (MW) 82.0 13.7
ΓD2

(1022s−1) 81.0 2.99
δavg 74.0 0.384

Table 1: Predictive capability of individual plasma parameters using
Linear discriminant analysis.

Leave-one-out CV
Plasma success (%)

parameters I III Avg

Pinput, ΓD2

LDA 94.6 80.8 91.0
QDA 90.5 84.6 89.0

Pinput, ΓD2
, Ip

LDA 94.6 76.9 90.0
QDA 91.9 80.8 89.0

Pinput, ΓD2
, δavg

LDA 94.6 80.8 91.0
QDA 91.9 73.1 87.0

Pinput, ΓD2
, ne

LDA 93.2 76.9 89.0
QDA 90.5 80.8 88.0

Pinput, ΓD2 , Bt
LDA 90.5 80.8 88.0
QDA 93.2 84.6 91.0

Pinput, ΓD2
, δavg, LDA 94.6 84.6 92.0

Bt, Ip QDA 94.6 88.5 93.0
Pinput, ΓD2 , ne, LDA 94.6 84.6 92.0

Bt, Ip QDA 94.6 92.3 94.0
Pinput, ΓD2 , δavg, LDA 94.6 84.6 92.0

Bt, Ip, ne QDA 96.0 88.5 94.0

Table 2: Average and class-wise leave-one-out CV success (%) for a
linear and quadratic combination of plasma parameters obtained by
LDA and QDA, respectively.

the highest success rates and hence may play the main
role in the classification between the two classes. This
corresponds with established knowledge regarding ELM
occurrence.130

Combinations of plasma parameters. DA is then per-
formed on the linear and quadratic combinations of the
plasma parameters, in order to further improve the suc-
cess rate. The average and class-wise leave-one-out CV
success rates are given in Table 2. It can be noted that a135

linear combination of Pinput and ΓD2 improves the average
leave-one-out CV success rate to 91.0% from (81.0 - 82.0)%
yielded by each of them individually. On the other hand,
a quadratic combination of Pinput and ΓD2

increases the
average success rate to 89.0%. This is further illustrated in140

Figure 2. It can be readily observed that the vertical and
horizontal dashed lines discriminate the two classes poorly,
whereas the solid lines, which are a function of Pinput and
ΓD2

, better separate the two classes. Further, it can be
seen that for 10.4 MW ≤ Pinput ≤ 16.5 MW the differ-145

ence between the quadratic and linear boundary is small

Figure 2: The solid line and curve indicate the linear (LDA) and
the quadratic (QDA) discriminant functions for type I and type III
ELMs from the analysed plasmas. Vertical and horizontal dashed
lines mark the discriminating values for Pinput and ΓD2

, respectively.

(∆ΓD2 ≤ 1.0s−1). However, for Pinput > 16.5 MW , this
difference is substantial.

Figure 3, presents the decrease in error rate (%) with
the addition of other plasma parameters. An addition of150

the remaining 4 plasma parameters, Bt, Ip, ne and δavg
to Pinput and ΓD2 reduces the average error rate to 8%
(alternatively, average success rate improves to 92% ) for
the linear combination of parameters and to 6% for the
quadratic case. While the addition of ΓD2

to Pinput had155

reduced the error rate by a factor of ∼2, the addition of
the remaining 4 parameters only lowers it further by 1%
for LDA and 5% for QDA. It is noteworthy that the error
rate for type III ELMs reduces by ∼ 4% for both LDA and
QDA whereas the error rate for type I ELMs remains un-160

changed for LDA and lowers by ∼ 5% for QDA. However,
this reduction in error rates comes at the expense of an
increased model complexity brought about by an increase
in the number of parameters in the discriminant function.

From the various models analyzed, the linear combina-165

tion of Pinput, ΓD2 , Bt, Ip along with either ne or δavg,
can be considered best models as they yield high average
and class-wise success rates with the least number of pa-
rameters. The quadratic combination of Pinput, ΓD2

, Bt,
Ip and ne gives a slightly higher success rate amongst all170

analyzed models. However, the quadratic model is signifi-
cantly more complex, less intuitive and less tractable, than
the linear counterpart. However, if the primary goal is
correct classification of a new plasma, then this quadratic
model can be slightly advantageous compared to the linear175

ones.
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Figure 3: Leave-one-out CV error rate versus the number of com-
bined plasma parameters using (a) LDA, (b) QDA

Separation hyperplane for type I and type III ELMs. The
mathematical form for the linear discriminant functions
derived for the classification of type I and III ELMs is pre-
sented in Table 3. The classification success rates for these180

linear separating hyperplanes (boundary) are provided in
Table 2. For each of the discriminant functions, given in
Table 3, type III ELMs are expected if the left-hand side of
the expression is less than the constant on the right-hand
side. Otherwise, type I ELMs are expected.185

4. Conclusions

In this work, a simple, high-accuracy, standardized au-
tomated classifier has been presented which can consider-
ably reduce the effort of ELM experts in identifying ELM
types. Further, the classifier provides a separation hyper-190

plane in terms of plasma parameters which reflects under-

Linear discriminant functions Wilks’ Λ
L1 Pinput − 1.41ΓD2 = 7.47 0.60
L2 Pinput − 1.25ΓD2 + 7.06Bt 0.53

−8.81Ip + 0.70ne = 8.75
L3 Pinput − 0.765ΓD2

+ 12.4Bt 0.47
−10.7Ip − 26.1δavg = 3.96

Table 3: Linear separation hyperplanes (boundary) for type I/III
ELMs, in terms of global plasma parameters. The corresponding
classification success rates (%) are provided in Table 2. Wilks’ Λ
indicates the goodness-of-fit of each discriminant function. A value
less than about 0.63 implies a reasonably good fit.

.

lying physics and can also aid in determining the opera-
tional boundaries for ELMy regimes during experimental
planning.

The future work will involve an expansion of the dataset195

as well as the use of normalized global plasma parame-
ters for rendering a machine independent classifier of ELM
types.
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