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Abstract. The spectral broadening of γ-rays from fusion plasmas can be measured

in high-resolution gamma-ray spectrometry (GRS). We derive weight functions that

illustrate the observable velocity space and quantify the velocity-space sensitivity of

one-step reaction high-resolution GRS measurements in magnetized fusion plasmas.

The weight functions suggest that GRS resolves the energies of fast ions directly

without the need for tomographic inversion for selected one-step reactions at moderate

plasma temperatures. The D(p,γ)3He reaction allows the best direct fast-ion energy

resolution. We illustrate our general formalism using reactions with and without

intrinsic broadening of the γ-rays for the GRS diagnostic at JET.

1. Introduction

The ITER measurement requirements propose resolution of the energy spectrum of

confined α-particles as goal [1]. However, recent studies of the velocity-space sensitivity

of available core plasma fast-ion diagnostics suggest that this goal cannot be achieved

by traditional measurement and analysis techniques as there is no direct one-to-one

correspondence between fast-ion energy and measured signals. On the contrary, fast-ion

charge-exchange recombination spectroscopy (e.g. fast-ion Dα (FIDA) [2, 3]), collective

Thomson scattering (CTS) [3, 4], neutron emission spectrometry (NES) [5, 6] and two-

step reaction γ-ray spectrometry (GRS) [7] observe large regions in 2D velocity space

‡ See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference

2014, Saint Petersburg, Russia
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covering a wide range of energies above a minimum energy. Neutral particle analyzers

(NPA) is a notable exception and could achieve the goal of energy resolution for the

observable narrow pitch range if the signal-to-noise ratio was high enough. Nevertheless,

energy resolution of confined α-particles at ITER is possibly achievable by tomographic

inversion in velocity space [8–12]. Here we demonstrate that fast-ion energies for

all pitches can be resolved directly by one-step reaction GRS without the need for

tomographic inversion at moderate plasma temperatures.

In GRS the γ-rays emitted by fusion plasmas are spectrally analyzed [13,14]. Today

the highest γ-ray fluxes from fusion plasmas are achieved at JET where GRS is routinely

used [15–30]. The high nuclear reaction rates in burning plasmas in the upcoming DT

campaign at JET [31,32] and later at ITER and DEMO will further enhance the γ-ray

emission [13, 14, 33, 34]. GRS measurements have traditionally been made at moderate

spectral resolution just sufficient to identify peaks appearing at characteristic γ-ray

energies in the spectra. Each peak can be related to a nuclear reaction by the γ-ray

energy. GRS measurements at moderate spectral resolution have been made at Doublet-

III [35], TFTR [36], JET [15–23] and JT-60U [37,38]. New detectors [26,39] allow GRS

measurements at very high spectral resolution sufficient to resolve the spectral shapes

of the individual peaks as demonstrated at JET [24–30] and ASDEX Upgrade [40].

Gamma-rays are emitted when an excited nucleus decays. Nuclear reactions

emitting γ-rays can be divided into one-step reactions and two-step reactions based

on their reaction kinematics [13]. In one-step reactions the γ-ray is a primary reaction

product, as e.g. in D(p,γ)3He which can also be written as

D + p → 3He + γ. (1)

In two-step reactions the γ-ray is a secondary reaction product, as e.g. in 9Be(α, nγ)12C.

The two steps of this reaction are:

α + 9Be → 12C∗ + n, (2)
12C∗ → 12C + γ. (3)

As this reaction releases high γ-ray fluxes in tokamaks with strong alpha particle

populations and beryllium as a main plasma impurity, it is foreseen for alpha particle

studies in the upcoming DT campaign at JET and at ITER [18, 41].

We have recently shown that two-step reaction high-resolution GRS measurements

observe rather large regions in velocity space using the 9Be(α, nγ)12C reaction as example

[7]. The measurements are sensitive to energies near the nuclear resonance energies in

selected pitch ranges. As γ-rays at measured energies Eγ can be produced on several

nuclear resonances, two-step reaction GRS provides actually no direct resolution of

fast-ion energies. Here we demonstrate using the D(p,γ)3He reaction as main example

that selected one-step reaction GRS measurements, on the contrary, directly provide

resolution of the fast-ion energies at moderate plasma temperatures. We will consider

the reactions summarized in table 1.

Sensitivities in 2D velocity-space of any diagnostic can be described by weight

functions which have been developed for FIDA [2, 3], NPA [2], CTS [3, 4], fast-ion
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Table 1. One-step fusion reactions discussed in this paper. The Q-value is the energy

released in the reaction. σQ stands for the intrinsic width of the γ-ray due to excited

nuclear states of the nuclear reaction product.

Reaction Q[MeV ] σQ[MeV ] Remark

D(p,γ)3He 5.5 0.0 well-established cross sections, often analysed

D(D,γ)4He 23.8 0.0 peak has not been found at JET

D(T,γ)5He 16.85 0.648 intrinsic broadening

T(p,γ)4He 19.7 0.0 suggested for DEMO, good for H in DT plasma

loss detectors [42] and NES [5, 6] as well as for two-step reaction GRS [7]. Weight

functions have been used in four ways. First, they show the velocity-space sensitivity

of the diagnostic separating the observable velocity-space regions from unobservable

regions [2–7, 43–62]. Second, assuming a 2D fast-ion velocity distribution function, the

velocity-space distribution of the ions generating a given measurement can be calculated

[2–7,43,56–61,63]. Third, they allow rapid calculation of synthetic measurements [3–7].

Fourth, given enough measurements and sufficiently high signal-to-noise ratio, it is

possible to infer a 2D fast-ion velocity distribution functions by tomographic inversion

[4, 8–12, 64, 65]. The formalism we present here allows these applications for one-step

reaction GRS measurements.

This paper is organized as follows. In section 2 we consider the kinematics

of one-step reactions. In section 3 we present analytic weight functions describing

the velocity-space sensitivity of high-resolution one-step reaction GRS measurements.

Section 4 illustrates typical observable velocity-space regions of the GRS spectrometers

at JET using D(p,γ)3He as example. In section 5 we derive analytic expressions for

the boundaries of the observable regions and explain the energy resolution of one-step

reaction GRS by energy and momentum conservation. In section 6 we benchmark our

formalism against numerical simulations. Section 7 discusses other nuclear reactions

with and without so-called intrinsic broadening. Similarly, the spectral broadening at

high temperature is discussed in section 8. Finally, in section 9 we discuss implications

of our formalism, and in section 10 we draw conclusions.

2. Kinematics of one-step reactions

The reaction kinematics determines the spectral broadening of the peak in the spectrum

for reactions without intrinsic broadening [66]. Here we derive the relationship between

the line-of-sight velocity uf , the energy of the fast ion and the energy Eγ of the detected

γ-ray by considering the reaction kinematics. As uf depends on the gyroangle Γ of

the fast ion, we will then also relate the energy Eγ to the gyroangle Γ of the fast ion.

The non-relativistic energy and momentum conservation equations of a generic one-step

reaction between species 1 and species 2 to form a reaction product, pr, releasing a
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γ-ray are, respectively,

1

2
m1v

2
1 +

1

2
m2v

2
2 +Q =

1

2
mprv

2
pr + Eγ , (4)

m1v1 +m2v2 = mprvpr + pγ. (5)

Eγ is the energy of the emitted γ-ray, pγ its momentum, and Q is the energy released in

the reaction. We now assume that one species is fast and the other thermal. Neglecting

the energy and momentum of the thermal species and denoting the mass of the fast

species to mf and its velocity to vf , the energy and momentum equations become

1

2
mfv

2
f +Q =

1

2
mprv

2
pr + Eγ, (6)

mfvf = mprvpr + pγ . (7)

The effects of non-zero temperature will be calculated in section 8 using the GENESIS

code [28, 67]. Elimination of v2pr in equation 6 using equation 7 gives

1

2
mfv

2
f +Q =

1

2mpr

(

m2
fv

2
f − 2mfpγ · vf + p2γ

)

+ Eγ (8)

where pγ = |pγ |. Equation 8 would also be obtained by the erroneous equation

mfvf = −mprvpr+pγ instead of momentum conservation (equation 5). This is checked

for and excluded below. The dot product pγ · vf can be expressed in terms of the

line-of-sight velocity uf by introducing the unit vector along the line-of-sight p̂γ:

pγ · vf = pγp̂γ · vf = pγuf . (9)

The magnitude of the momentum pγ and the energy of the γ-ray are related by

pγ = Eγ/c (10)

where c is the speed of light. Substitution of equations 9 and 10 into equation 8 gives

1

2
mfv

2
f +Q =

1

2mpr

(

m2
fv

2
f − 2mf

Eγ

c
uf +

E2
γ

c2

)

+ Eγ . (11)

Equation 11 relates the line-of-sight velocity uf of the fast ion to the measurable energy

Eγ of the γ-photon. We solve equation 11 for uf and express v2f in (v‖, v⊥)-coordinates

with respect to the total magnetic field as v2f = v2‖ + v2⊥:

uf =
(mf −mpr)c

2Eγ

(v2‖ + v2⊥) +
Eγ

2mfc
+

mprc(Eγ −Q)

mfEγ

. (12)

The line-of-sight velocity uf is determined by the gyroangle Γ according to [4, 6, 10]

uf = v‖ cosφ+ v⊥ sinφ cos Γ (13)

where φ is the observation angle between the line-of-sight and the magnetic field. We

eliminate uf from equations 12 and 13 and solve for Γ ∈ [0, π]:

Γ = arccos

(mf−mpr)c

2Eγ
(v2‖ + v2⊥) +

Eγ

2mf c
+ mprc(Eγ−Q)

mfEγ
− v‖ cosφ

v⊥ sinφ
. (14)

This relation allows us to calculate the gyroangle Γ ∈ [0, π] of the fast ion leading to

the detected energy Eγ of the γ-ray. A second solution for Γ′ ∈ [π, 2π] is given by [4]

Γ′ = 2π − Γ. (15)
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3. One-step reaction GRS weight functions

The relation between fast-ion measurements, s, and fast-ion distribution functions, f ,

can be expressed as an integral over phase space,

s(Eγ,1, Eγ,2, φ) =

∫

vol

∫ ∞

0

∫ ∞

−∞

w(Eγ,1, Eγ,2, φ, v‖, v⊥,x)f(v‖, v⊥,x)dv‖dv⊥dx, (16)

where w is the weight function [2–7, 43] and x denotes the spatial coordinates. For

GRS measurements, s(Eγ,1, Eγ,2, φ) is the detection rate of γ-rays [photons/s] in the

energy range Eγ,1 < Eγ < Eγ,2 with an observation angle φ. The units of f(v‖, v⊥,x)

are [fast ions × s2/m5]. The units of GRS weight functions are thus [photons / (fast

ion × s)] describing the velocity-space sensitivity of the diagnostic. Analogous to two-

step reaction GRS weight functions as well as FIDA and NES weight functions [3,6,7],

we factor GRS weight functions w into a detection rate function R(v‖, v⊥, φ,x) and a

probability prob(Eγ,1 < Eγ < Eγ,1|φ, v‖, v⊥):
w(Eγ,1, Eγ,2, φ, v‖, v⊥,x) = R(v‖, v⊥, φ,x)× prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥). (17)

R(v‖, v⊥, φ,x) describes incident rates in [photons / (fast ion × s)] irrespective of the

γ-ray energy [7]. R(v‖, v⊥, φ,x) hence has the same units as weight functions whereas

the probabilities are dimensionless numbers between 0 and 1. Energy and momentum

conservation determine the boundaries of the probability functions prob(Eγ,1 < Eγ <

Eγ,2|φ, v‖, v⊥) in (v‖, v⊥)-space and hence ultimately the boundaries of weight functions

which separate the observable regions from the unobservable regions.

Before we calculate probability functions, we briefly discuss the rate function

R. Assuming a fast reactant with velocity (v‖, v⊥) and a thermal reactant at rest

and neglecting any angle dependence of the cross section σ, the rate function can be

calculated according to [6]

R(v‖, v⊥,x) =
Ω

4π
nt

√

v2‖ + v2⊥σ
(√

v2‖ + v2⊥

)

. (18)

where Ω is the solid angle of the detector as seen from position x and nt is the density

of the thermal ions. The cross section can be modelled as [40]

σ(E) =
S

E
exp(−βG/

√
E) (19)

where E is the energy, βG is the Gamow constant and S is the so-called astrophysical

factor which is a slowly varying function of energy. S is modelled as a fifth-order

polynomial for which the coefficients are given in reference [40]. The rate function is

illustrated in figure 1.

The probability function prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥) can be calculated

by transforming to probabilities in Γ using equation 14. This transformation is

advantageous as the gyroangle has, to a good approximation, a uniform distribution:

pdfΓ =
1

2π
. (20)
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Figure 1. Rate function R in units [γ-photons / (ion × s)]. The magnitude is shown

in base 10 logarithm.

We write the probability function as an integral over the corresponding probability

density function and transform to probability densities in Γ:

prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥) =
∫ Eγ,2

Eγ,1

pdf(Eγ |φ, v‖, v⊥)dEγ

=

∫ Γ1

Γ2

pdfΓdΓ +

∫ 2π−Γ2

2π−Γ1

pdfΓdΓ =
Γ1 − Γ2

π
. (21)

We have used that

pdf(Eγ|φ, v‖, v⊥) = pdfΓ

∣

∣

∣

∣

dΓ

dEγ

∣

∣

∣

∣

. (22)

The second integral in Γ arises due to the second solution in Γ shown in equation 15.

The integration limits Γ1 and Γ2 are respectively given by the energies Eγ,1 and Eγ,2

according to equation 14. We stress that the probability function depends only on the

observation angle φ, the considered γ-ray energy range and the reaction kinematics but

not on the reaction cross sections.

4. Observable velocity-space regions for the D(p,γ)3He reaction at JET

Typical observation angles for the two high-resolution GRS diagnostics at JET are about

φ = 90◦ and φ = 30◦ with respect to the magnetic field in the plasma centre where most

γ-rays are generated. We here neglect variations of the observation angle along the

line-of-sight. Figure 2 shows probability functions for the D(p,γ)3He reaction with fast

protons and thermal deuterium for these angles and various γ-ray energy ranges. The

observation regions are similar for the two views and are bounded by circular arcs that

have their centers close to the origin as we will show in section 5. Hence fast ions in

narrow energy ranges are observable in each γ-ray energy range. The radius of each

circular arc as well as the distance of its center to the origin are independent of φ.

For φ = 90◦ the probability functions are symmetric about v‖ = 0. For φ = 30◦ the

center is tilted towards negative velocities, and hence the observation regions are slightly

biased towards negative velocities. We also observe that the probability functions for

φ = 30◦ are narrower and have larger amplitudes than those at φ = 90◦. The shapes and

amplitudes of the probability functions suggest good resolution of the fast ion energies
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for all pitches in contrast to other fast-ion diagnostics. Weight functions with perfect

energy resolution would be bounded by concentric circular arcs about the origin in

(v‖, v⊥)-coordinates.
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(a) φ = 90◦
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(b) φ = 30◦

Figure 2. Probability functions prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥) of D(p,γ)3He with

vp ≫ vD for two observation angles φ and various γ-ray energies in base 10 logarithm.

In each figure we plot four probability functions showing the observation regions at

four γ-ray energy ranges with fixed width Eγ,2 − Eγ,1 = 1 keV: Eγ,1 − Q = 50 keV,

150 keV, 300 keV, 500 keV from inside to outside.
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(a) φ = 90◦
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(b) φ = 30◦

Figure 3. Weight functions of D(p,γ)3He with vp ≫ vD for two observation angles φ

and various γ-ray energy ranges of fixed width Eγ,2−Eγ,1 = 1 keV in units [γ-photons

/ (ion × s)] in base ten logarithm. From inside to outside: Eγ,1 − Q = 50 keV, 150

keV, 300 keV, 500 keV. The weight functions are obtained from equation 17. R is

shown in figure 1 and prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥) in figure 2.

Figure 3 shows the corresponding weight functions, i.e. the product of each

probability function from figure 2 with the rate function R from figure 1. As R covers

the entire velocity space, the forms of the probability functions and the corresponding

weight functions are identical. However, as the cross sections and hence R increase with

energy, the weight functions have their largest amplitudes in the parts furthest away

from the origin.

5. Boundaries of one-step reaction GRS weight functions

Boundaries of weight functions are found by inserting cos Γ = ±1 in equation 13 as then

the line-of-sight velocity is at extremal values. Substitution of uf into equation 12 then
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gives

E2
γ + 2mprc

2(Eγ −Q)− 2mfc(v‖ cosφ± v⊥ sinφ)Eγ

−mf (mpr −mf )c
2(v2‖ + v2⊥) = 0. (23)

Equation 23 can be written in the form (v‖ − v‖,0)
2 + (v⊥ − v⊥,0)

2 = r2:
(

v‖ +
cosφEγ

(mpr −mf )c

)2

+

(

v⊥ ± sin φEγ

(mpr −mf)c

)2

=
mprE

2
γ + 2mpr(mpr −mf )c

2(Eγ −Q)

mf (mpr −mf )2c2
. (24)

The weight functions are hence bounded by the circular arcs with v⊥ > 0. The center

and the radius rv are given by

v‖,0 = − cosφEγ

(mpr −mf )c
, (25)

v⊥,0 = ± sinφEγ

(mpr −mf )c
, (26)

rv =

√

mpr

mf

(

E2
γ

(mpr −mf )2c2
+

2(Eγ −Q)

mpr −mf

)

. (27)

The distance of the center of the circular arcs to the origin is

v0 =
Eγ

(mpr −mf )c
. (28)

The radicand in equation 27 must be positive which implies a minimum energy of the

observable γ-rays:

Eγ > Eγ,min =
√

2(mpr −mf )c2Q + (mpr −mf )2c4 − (mpr −mf )c
2. (29)

For example, for the D(p,γ)3He reaction with fast protons and thermal deuterium

Eγ,min = 5.492 MeV. This minimum energy is only few keV’s below the released energy

Q whereas there are no maximum energies. The peak is strongly asymmetric with a

much larger high-energy tail than low energy tail as has been observed previously [66].

As the low-energy tail is close to the experimental resolution, we consider the nominal

peak energy and the high-energy tail in the following. For NES an analogous minimum

energy of observable neutrons was found to be En > Q/2 [6] which implies a considerably

more prominent low-energy tail in neutron emission energy spectra.

As observed in figure 3 and in equations 25 – 28, the radius and the distance of the

center to the origin do not depend on the observation angle φ, but the pitch coordinate

v‖/v of the center does. For a given energy Eγ we can now give upper and lower energy

limits on the fast proton leading to the γ-ray emission. The center of the upper circular

boundary has v⊥,0 > 0 whereas the center of the lower circular boundary v⊥,0 < 0 (see

equation 26). Hence the largest and smallest possible proton energies Emax and Emin

for a given γ-ray energy Eγ are

Emin =
1

2
mf (rv − v0)

2, (30)

Emax =
1

2
mf(rv + v0)

2 (31)



M. Salewski et al. 9

where rv and v0 are given by equations 27 and 28, respectively. The fast-ion energy

limits for a given γ-ray energy range are found at the extremal values of the considered

γ-ray energies. In figure 4 we plot an example of a probability function together with

its boundaries as calculated in equations 25 – 27 as well as the upper and lower limits

on the proton energies according to equations 30 and 31. In (v‖, v⊥)-coordinates the

upper and lower energy limits show as the two circles about the origin that each touch

the probability function. These upper and lower proton energy limits are plotted as

a function of the measured γ-ray energy Eγ for the D(p,γ)3He reaction in figure 5,

illustrating the fast-ion energy resolution of the measurement for each γ-ray energy.

This reaction is useful if T⊥ < 400 keV. At higher tail temperatures the peak tends

to become difficult to separate from the background [17]. The energy limits are valid

for zero temperature of the deuterium. We note that in JET there are often also fast

deuterium ions in the plasma. Fast hydrogen is generated by first harmonic ICRH. If

fast deuterium ions due to NBI are in the plasma, they will also be accelerated to high

energies by second harmonic ICRH. Under some conditions fast deuterium can even be

generated without NBI [17].
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v
||
 [106 m/s]

v ⊥
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0
6  m

/s
]

 

 

−9

−8.5

−8

−7.5

Figure 4. Probability function of D(p,γ)3He with vp ≫ vD for φ = 30◦ and

Eγ,1 − Q = 300 keV in units [γ-photons / (ion × s)] in base ten logarithm. We

set Eγ,2−Eγ,1 = 50 keV, so that the low-energy and high-energy boundaries are more

easily distinguishable. Black dashed lines: boundaries. Green dashed lines: Upper and

lower energy limits.
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E
p
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]

Figure 5. Proton energy resolution of the γ-ray spectrometry measurement. The

green region shows possible proton energies Ep for given a given measured γ-ray energy

Eγ . This neglects the energy of the thermal species. Here we set Eγ,2 −Eγ,1 = 1 keV.
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The fast-ion energy resolution of the measurement is good if rv ≫ v0. This is indeed

the case for large or even moderate energy shifts. The ratio rv/v0 is

rv
v0

=

√

mpr

mf

(

1 +
Eγ −Q

Eγ

× 2(mpr −mf)c2

Eγ

)

. (32)

At the nominal peak energy Eγ = Q, the radius becomes rv =
√

mpr

mf
v0. This will also

hold approximately when the energy shift Eγ − Q is so small that the first term in

equation 27 dominates. The second term dominates at large energy shifts, i.e. if

Eγ −Q

Eγ

≫ Eγ

2(mpr −mf)c2
. (33)

For example for fast protons in D(p,γ)3He, 2(mpr −mf )c
2 ∼ 4 GeV and Eγ ∼ 5.5 MeV,

and hence the fraction Eγ/(2(mpr−mf )c
2) is of order 1/1000. The radius is larger than

the distance of the circular arc to the origin, unless the Eγ is very close to the minimum

energy Eγ,min. For large energy shifts according to equation 33, we find rv ≫ v0, i.e. the

centers of the circular arcs are close to the origin compared with the radius. Equation 32

suggests that lowQ-values (and hence typical Eγ ∼ Q), largempr/mf and largempr−mf

are beneficial for the energy resolution. NES weight functions are analogously bounded

by circular arcs. But for the GRS weight function of the D(p,γ)3He reaction, the center

of the circle lies very close to the origin compared with the radius. Hence for this

and other selected one-step reaction GRS, the measured γ-energies can be related to

particular fast-ion energies in rather narrow bands. These significant differences between

NES and one-step GRS in velocity-space observation regions despite the very similar

reaction kinematics originate from the ratios between energies and momenta for neutron

and γ-ray fusion products:

En = pn
vn
2
, (34)

Eγ = pγc (35)

For example, for the 2.45 MeV neutrons from D(D,n)3He, En/pn . c/20. For one-step

reactions releasing γ-rays, Eγ/pγ = c as always. One may estimate how much of the

momentum of the fast ion before the reaction a released γ-ray or neutron can carry:

pγ
pf

=
Eγ

Ef

vf
2c

(36)

pn
pf

=
En

Ef

vf
vn

(37)

As vn ≪ 2c and if En ∼ Eγ, the γ-rays carry a much smaller fraction of the total

momentum after the reaction compared with a neutron in a similar reaction. The γ-ray

therefore tends to carry a significant fraction of the energy, but a small fraction of the

momentum compared with neutrons. For the D(p,γ)3He reaction with Ep ∼ 1 MeV and

Eγ ∼ Q ∼ 5.5 MeV, we get pγ/pp ∼ 0.13. For the D(D,γ)4He reaction with ED ∼ 1 MeV

and Eγ ∼ Q ∼ 23.8 MeV, we get pγ/pD ∼ 0.39. As comparison, for the D(D,n)3He

reaction releasing 2.45 MeV neutrons and ED ∼ 1 MeV, we get pn/pD ∼ 1.1. Hence
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the observation regions become strongly selective in energy and only weakly selective

in pitch, as reflected by the circular shapes centered close to the origin, for one-step

reactions releasing γ-rays with low Q-value when the momentum carried by the γ-ray is

comparatively low. Examples of probability functions for various reactions illustrating

their energy resolution will be shown in section 7.

6. Numerically calculated weight functions with anisotropic cross sections

Weight functions can also be calculated numerically using the GENESIS code that can

predict a GRS measurement for an arbitrary fast-ion distribution function. In this

numerical approach, we calculate a γ-ray spectrum for a collection of Nf fast ions

located at a single point in velocity space and then scan the location of this point

through velocity space. This formalism has been presented for two-step reaction GRS

measurements [7] and is analogous to numeric computation of weight functions for

FIDA [2, 10], CTS [4] and NES [5, 6]. The amplitude of the weight function at phase-

space position (xp, v‖p, v⊥p) is [6]

w(Eγ,1, Eγ,2, φ, v‖p, v⊥p,xp) =
s(Eγ,1, Eγ,2, φ)

Nf

. (38)

GRS weight functions show the incident rate s of γ-photons between two γ-ray energies

viewed at angle φ per alpha particle at phase-space position (xp, v‖p, v⊥p). In the

numerical approach we take anisotropy of the cross sections into account [68]. Figure 6

shows the rate function R for the two observation angles φ = 90◦ and φ = 30◦ illustrating

the strong anisotropy of the cross sections. Figure 7 shows numerically calculated

weight functions at these angles. While the shapes of the numerically calculated weight

functions agree with the analytic model at the same angles (see figure 3), the amplitudes

are different due to the anisotropic cross sections.
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(b) φ = 30◦

Figure 6. Rate function R in units [γ-photons / (ion × s)] for two observation angles.

Anisotropic cross sections are accounted for.

Fast-ion distribution functions typical for ICRH are often characterized by a so-

called tail temperature. We model the tail of such a distribution functions as strongly

biased bi-Maxwellian with a tail temperature T⊥ = 150 keV and T‖ = 15 keV as

illustrated in figure 8. The product of weight functions and a given fast-ion velocity
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Figure 7. Numerically calculated weight function in units [γ-photons / (ion × s)] for

two observation angles. Anisotropic cross sections are accounted for.
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Figure 8. 2D bi-Maxwellian in units [fast ions × s2/m5]. The 2D bi-Maxwellian f2D

is related to the corresponding 3D bi-Maxwellian f3D by f2D = 2πv⊥f
3D assuming

rotational symmetry about the magnetic field vector.

distribution functions w× f resolves the origin of the γ-rays in 2D velocity space of the

fast ions for this given f as illustrated in figure 9. The narrow probability functions

at φ = 30◦ provide a better energy resolution for narrow velocity distribution functions

with v‖ ≪ v⊥, such as the bi-Maxwellian from figure 8.
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Figure 9. Products w × f of the weight functions illustrated in figure 3 and the

bi-Maxwellian illustrated in figure 8(b). The observation angles are (a) φ = 90◦ and

(b) φ = 30◦. The γ-rays observed in each narrow energy range originate from small

regions in velocity space.
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Figure 10. Energy spectra for the bi-Maxwellian distribution from figure 8 as

calculated using Monte Carlo simulations and by weight functions for (a) φ = 90◦

and (b) φ = 30◦. The spectrum shows the number of detected γ-photons per second

[photons/s] in small energy bins of widths Eγ,2 − Eγ,1 = 1 keV.

Figure 10 shows a comparison of spectra as calculated by traditional Monte Carlo

simulations and by weight functions. As expected, the two approaches give very similar

results and differ only due to Monte Carlo noise. The weight function approach has

two advantages: First, the velocity-space region generating the γ-ray at each energy

can be identified (see figure 9). Second, once the weight functions are calculated, the

weight function approach is significantly faster as it requires only a matrix multiplication

instead of Monte Carlo simulations. Hence spectra of many fast-ion velocity distribution

functions can rapidly be calculated.

7. Other reactions and excited charged reaction products

Our formalism is general and applies to any one-step reaction GRS measurement,

including reactions where the charged reaction product is formed in an excited nuclear

state. This leads to so-called intrinsic broadening of the reaction energy peak such as

in D(T,γ)5He. For many reactions the energy dependence of the reaction cross sections

is described by only few data points. We can nevertheless draw conclusions about the

velocity-space sensitivity for such one-step reactions. The cross sections enter only into

the calculation of the rate function R whereas probability functions are calculated based

on the conservation of energy and momentum and do not depend on the cross sections.

Hence we can calculate the probability functions and the boundaries of weight functions

exactly even if the cross section are poorly known. Three examples of one-step reactions

with less well established cross sections are D(D,γ)4He, D(T,γ)5He and T(p,γ)4He. The

highly energetic γ-rays from these reactions (see table 1) could by observable at ITER as

deuterium and tritium are the main constituents of ITER plasmas and the background

noise above 10 MeV in ITER is practically zero.

Some example probability functions of the D(p,γ)3He, D(D,γ)4He and T(p,γ)4He
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reactions are illustrated in figure 11. The D(p,γ)3He reactions with fast protons

provides the narrowest weight functions suggesting direct fast-proton energy resolution.

D(p,γ)3He with fast deuterium and thermal protons and T(p,γ)4He have somewhat

broader weight functions tilted to negative pitches. The D(D,γ)4He reaction provides

the lowest fast-ion energy resolution.
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Figure 11. Probability functions prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥) for the various

reactions: (a) D(p,γ)3He with fast p; (b) D(p,γ)3He with fast D; (c) T(p,γ)4He with

fast p; (d) D(D,γ)4He. The inner probability functions is at Eγ,1 − Q = 50 keV

for each reaction, and the outer at 500 keV. The observation angle is φ = 30◦, and

Eγ,2 − Eγ,1 = 1 keV.

Reactions with so-called intrinsic broadening require special attention, for example

the D(T,γ)5He reaction. The ground state of the 5He nucleus has a broad energy width

due to its very low lifetime after which it decays to 4He and a neutron. The energy of

the ground state is then defined as Lorentzian with a width σ∗
Q = 0.648 MeV. In this

case DT gamma-ray energies are also distributed as a Lorentzian distribution centered

about the nominal energy Q = 16.85 MeV:

pdf(Q∗) =
1

π

1
2
σ∗
Q

(Q−Q∗)2 + (1
2
σ∗
Q)

2
. (39)

We account for this effect by introducing Q∗ as nuisance parameter:

prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥)

=

∫

Q∗

prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥, Q∗)× pdf(Q∗)dQ∗

=

∫

Q∗

∣

∣

∣

∣

Γ2(Q
∗, ..)− Γ1(Q

∗, ..)

π

∣

∣

∣

∣

pdf(Q∗)dQ∗ (40)
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An example probability function for the D(T,γ)5He reaction is shown in figure 12. The

intrinsic broadening of the peak makes it impossible to identify unobservable regions in

velocity space. Nevertheless, the measurement is significantly more sensitive in some

regions compared with others.
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Figure 12. Probability function prob(Eγ,1 < Eγ < Eγ,2|φ, v‖, v⊥) of the D(T,γ)5He

reaction for φ = 30◦, Eγ1 −Q = 0.35 MeV, Eγ2 −Eγ1 = 1 keV. The intrinsic width of

the line is 648 keV.

8. Blurring due to high temperatures

In our model we assumed that the energy and momentum of the thermal species is

negligible. Non-zero temperatures can be accounted for by the Monte-Carlo sampling

approach as previously shown for NES [6] where it was found that non-zero temperatures

blur the weight functions. In figure 13 we illustrate the blurring effect for one-step

reaction GRS weight functions for a typical JET ion temperature of 5 keV. The blurring

due to high temperatures decreases the fast-ion energy resolution. At larger fast-ion

energies the blurring effect is less pronounced and the fast-ion energy resolution thus

less decreased.
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Figure 13. Comparison of numerically calculated weight functions at 0 keV and 5 keV

at two γ-ray energy shifts Eγ,1 −Q.

9. Discussion

Weight functions have previously been calculated for FIDA [2, 3], NPA [2], collective

Thomson scattering CTS [3,4], FILD [42] and NES measurements [5,6] as well as for two-

step reaction GRS [7]. The very different weight functions of each diagnostic imply that

the diagnostics complement each other well. FIDA, CTS, NES and two-step reaction

GRS observe large regions in velocity space which do not allow energy resolution of

the measurements unless tomographic techniques in velocity space are used [8–12]. On

the contrary, the positions of the narrow weight functions of selected one-step reaction

GRS measurements demonstrate that GRS can provide energy resolution of the fast-ion

population, even without tomographic techniques. The fast-ion energy resolution is a

strong asset of one-step reaction high resolution measurements that could be highly

important to further fast-ion studies at JET, ITER or other large-size tokamaks with

significant γ-ray fluxes. However, at the very high temperatures of burning plasma

(T ∼ 20 keV) it is likely that tomographic inversion techniques will be required to

provide energy resolution.

We have argued that the ITER measurement requirements on resolution of the

confined α-particles energies [1] is not achievable by major core fast-ion diagnostic

(FIDA, CTS, NES or two-step reaction GRS) without relying on tomographic inversion

in velocity space. A notable exception is NPA that can provide energy resolution for a

narrow observed pitch range if the signal-to-noise ratio is high enough. Our results would
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suggest that energy resolution of confined α-particles could in principle by achievable

at moderate temperatures for one-step reactions involving α-particles. However, the

chances to observe such peaks at ITER are bleak. The capture reactions α(D,γ)6Li and

α(T,γ)7Li have much lower cross sections than 9Be(α, nγ)12C by about five to six orders

of magnitude at the resonances. As deuterium and tritium will be about 100 times

more abundant than beryllium in ITER and the velocity-space observation regions have

comparable sizes, the emission will be about three to four orders of magnitude smaller.

Hence we can expect counting rates on the order of 1 Hz in a spectral range (1-3

MeV) where the background counting rates are on the order of 100 kHz. Therefore the

observation of one-step reaction peaks involving α-particles at ITER will be extremely

difficult if not impossible. Hence one-step reaction GRS will likely not be able to

meet the ITER measurement requirement on energy resolution of confined α-particles,

either. Nevertheless, other fast ions should be readily observable at ITER and DEMO.

T(p,γ)4He has been highlighted as a very promising reaction in DT plasmas [34] which

can be shown during ICRH minority heating in the upcoming tritium campaign at JET.

The D(T,γ)5He reaction should be observable as count rates on the order of 1 kHz are

expected in a high-energy spectral range (> 10 MeV) where the background noise is

practically zero. Other ions accelerated by ion cyclotron resonance heating, e.g. 3He,

could also be readily observable. The D(D,γ)4He reaction peak could so far not be

detected in JET discharges, but might appear at ITER.

Weight functions are now available for all major core fast-ion diagnostics. Full

tomographic inversion of fast-ion measurements to infer fast-ion distribution functions

has been demonstrated for FIDA measurements at ASDEX Upgrade with simultaneous

measurements in three to five views. Such a full tomographic inversion is not likely to be

achievable based on one-step reaction GRS measurements by themselves. However, we

can in principle combine the one-step reaction GRS with other fast-ion measurements.

For example, JET is equipped with two NES views, two GRS views as well as an

NPA [30]. With sufficiently large signal-to-noise ratio, such inversions can be attempted

in future work.

10. Conclusions

We derived analytic expressions, so-called weight functions, describing the velocity-space

observation regions of one-step reaction GRS measurements and benchmarked them

against numerical simulations. The spectral resolution of the γ-rays achievable with

modern detectors allows energy resolution of the fast ion distribution for all pitches.

One-step reaction GRS is the only major core fast-ion diagnostic that can provide

energy resolution directly without tomographic inversion in velocity space which is a

strong asset of this diagnostic. The energy resolution is generally independent of the

observation angle. However, for fast-ion distributions with large v⊥ and low v‖, as

typical for ICRH, the resolution is better for oblique lines-of-sight. One-step reaction

GRS weight functions provide additional information on fast-ion velocity space for any
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machine with substantial γ-ray fluxes, such as JET, ITER and DEMO. Weight functions

are now available for the major fast-ion diagnostics: FIDA, NPA, CTS, NES, and one-

and two-step reaction GRS. Hence all major fast-ion diagnostics can now in principle

be combined to determine fast-ion velocity distribution functions experimentally.
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